21,011 research outputs found

    Low-speed aerodynamic performance of 50.8-centimeter-diameter noise-suppressing inlets for the Quiet, Clean, Short-haul Experimental Engine (QCSEE)

    Get PDF
    Two basic inlet concepts, a high throat Mach number (0.79) design and a low throat Mach number (0.60) design, were tested with four diffuser acoustical treatment designs that had face sheet porosity ranging from 0 to 24 percent for the high Mach number inlet and 0 to 28 percent for the low Mach number inlet. The tests were conducted in a low speed wind tunnel at free stream velocities of 0, 41, and 62 m/sec and angles of attack to 50 deg. Inlet throat Mach number was varied about the design value. Increasing the inlet diffuser face sheet porosity resulted in an increase in total pressure loss in the boundary layer for both the high and low Mach number inlet designs, however, the overall effect on inlet total pressure recovery of 0.991 at the design throat Mach number, a free stream velocity of 41 m/sec, and an angle of attack of 50 deg; Inlet flow separation at an angle of attack of 50 deg was encountered with only one inlet configuration the high Mach number design with the highest diffuser face sheet porosity (24 percent)

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4 - 3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h(0)(95%). The strictest constraint is h(0)(95%) = 4.7 x 10(-26) from IGR J17062 - 6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are epsilon(95%) = 3.1 x 10(-7) and alpha(95%) = 1.8 x 10(-5) respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date

    Analysis of first LIGO science data for stochastic gravitational waves

    Get PDF
    We present the analysis of between 50 and 100 h of coincident interferometric strain data used to search for and establish an upper limit on a stochastic background of gravitational radiation. These data come from the first LIGO science run, during which all three LIGO interferometers were operated over a 2-week period spanning August and September of 2002. The method of cross correlating the outputs of two interferometers is used for analysis. We describe in detail practical signal processing issues that arise when working with real data, and we establish an observational upper limit on a f−3 power spectrum of gravitational waves. Our 90% confidence limit is Ω0h210

    Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset

    Full text link
    The response of a neuron to synaptic input strongly depends on whether or not it has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a novel desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical neurons

    Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

    Get PDF
    We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 × 10−6 (modeled) and 3.1 × 10−4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for z ≤ 1. We estimate 0.07–1.80 joint detections with Fermi-GBM per year for the 2019–20 LIGO-Virgo observing run and 0.15–3.90 per year when current gravitational-wave detectors are operating at their design sensitivities

    Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    Get PDF
    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several highorder post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9–240 Gpc−3 yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections
    corecore