1,616 research outputs found

    Saturation Spectroscopy of Iodine in Hollow-core Optical Fibre

    Get PDF
    We present high-resolution spectroscopy of Iodine vapour that is loaded and trapped within the core of a hollow-core photonic crystal fibre (HC-PCF). We compare the observed spectroscopic features to those seen in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ~6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.Comment: 12 pages, 7 figure

    Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis

    Get PDF
    Simplified Aircraft-based Parallel Approach (SAPA) is an advanced concept proposed by the Federal Aviation Administration (FAA) to support dependent parallel approach operations to runways with lateral spacing closer than 2500 ft. At the request of the FAA, NASA performed an initial assessment of the potential performance and feasibility of the SAPA concept, including developing and assessing an operational implementation of the concept and conducting a Monte Carlo wake simulation study to examine the longitudinal spacing requirements. The SAPA concept was shown to have significant operational advantages in supporting the pairing of aircraft with dissimilar final approach speeds. The wake simulation study showed that support for dissimilar final approach speeds could be significantly enhanced through the use of a two-phased altitudebased longitudinal positioning requirement, with larger longitudinal positioning allowed for higher altitudes out of ground effect and tighter longitudinal positioning defined for altitudes near and in ground effect. While this assessment is preliminary and there are a number of operational issues still to be examined, it has shown the basic SAPA concept to be technically and operationally feasible

    Development and management of systemic lupus erythematosus in an HIV-infected man with hepatitis C and B co-infection following interferon therapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The association of human immunodeficiency virus and immune dysfunction leading to development of autoimmune markers is well described, but human immunodeficiency virus infection is relatively protective for the development of systemic lupus erythematosus. In contrast, development of systemic lupus erythematosus with hepatitis C and with interferon therapy is well described in a number of case reports. We here describe the first case of systemic lupus erythematosus developing in a man infected with human immunodeficiency virus, hepatitis C and hepatitis B co-infection where the onset seems to have been temporally related to interferon therapy.</p> <p>Case presentation</p> <p>We report the occurrence of systemic lupus erythematosus complicating interferon-α therapy for hepatitis C in a 47-year-old asplenic male with haemophilia co-infected with human immunodeficiency virus and hepatitis B. He presented with a truncal rash, abdominal pains and headache and later developed grade IV lupus nephritis requiring haemodialysis, mycophenolate mofetil and steroid therapy. We were able to successfully withdraw dialysis and mycophenolate while maintaining stable renal function.</p> <p>Conclusion</p> <p>Interferon-α is critical in antiviral immunity against hepatitis C but also acts as a pathogenic mediator for systemic lupus erythematosus, a condition associated with activation of plasmacytoid dendritic cells that are depleted in human immunodeficiency virus infection. The occurrence of auto-antibodies and lupus-like features in the coinfections with hepatitis C require careful assessment. Immunosuppressant therapy for lupus risks exacerbating underlying infections in patients with concurrent human immunodeficiency virus, hepatitis B and C.</p

    Calculation of Graviton Scattering Amplitudes using String-Based Methods

    Get PDF
    Techniques based upon the string organisation of amplitudes may be used to simplify field theory calculations. We apply these techniques to perturbative gravity and calculate all one-loop amplitudes for four-graviton scattering with arbitrary internal particle content. Decomposing the amplitudes into contributions arising from supersymmetric multiplets greatly simplifies these calculations. We also discuss how unitarity may be used to constrain the amplitudes.Comment: 25 pages +5 figs. , SWAT-94-37 UCLA/TEP/94/30, Plain TeX. (Typos in eqns. fixed

    Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Get PDF
    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35+5−3M⊙ and 30+3−4M ⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    The Imprint of Gravitational Waves in Models Dominated by a Dynamical Cosmic Scalar Field

    Get PDF
    An alternative to the standard cold dark matter model has been recently proposed in which a significant fraction of the energy density of the universe is due to a dynamical scalar field (QQ) whose effective equation-of-state differs from that of matter, radiation or cosmological constant (Λ\Lambda). In this paper, we determine how the Q-component modifies the primordial inflation gravitational wave (tensor metric) contribution to the cosmic microwave background anisotropy and, thereby, one of the key tests of inflation.Comment: 15 pages, 14 figures, revtex, submitted to Phys. Rev.

    Early dissemination of bevacizumab for advanced colorectal cancer: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We describe early dissemination patterns for first-line bevacizumab given for metastatic colorectal cancer treatment.</p> <p>Methods</p> <p>We analyzed patient surveys and medical records for a population-based cohort with metastatic colorectal cancer treated in multiple regions and health systems in the United States (US). Eligible patients were diagnosed with metastatic colorectal cancer and initiated first-line chemotherapy after US Food & Drug Administration (FDA) bevacizumab approval in February 2004. First-line bevacizumab therapy was defined as receiving bevacizumab within 8 weeks of starting chemotherapy for metastatic colorectal cancer. We evaluated factors associated with first-line bevacizumab treatment using logistic regression.</p> <p>Results</p> <p>Among 355 patients, 31% received first-line bevacizumab in the two years after FDA approval, including 26% of men, 41% of women, and 16% of those ≄ 75 years. Use rose sharply within 6 months after FDA approval, then plateaued. 20% of patients received bevacizumab in combination with irinotecan; 53% received it with oxaliplatin. Men were less likely than women to receive bevacizumab (adjusted OR 0.55; 95% CI 0.32-0.93; p = 0.026). Patients ≄ 75 years were less likely to receive bevacizumab than patients < 55 years (adjusted OR 0.13; 95% CI 0.04-0.46; p = 0.001).</p> <p>Conclusions</p> <p>One-third of eligible metastatic colorectal cancer patients received first-line bevacizumab shortly after FDA approval. Most patients did not receive bevacizumab as part of the regimen used in the pivotal study leading to FDA approval.</p
    • 

    corecore