3,488 research outputs found

    Permafrost in a warmer world: net ecosystem carbon imbalance

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Arctic tundra and boreal forest have accumulated a vast pool of organic carbon, twice as large as the atmospheric carbon pool and three times as large as the carbon contained by all living things. As the permafrost region warms, more of this carbon will be exposed to decomposition, combustion, and hydrologic export. This permafrost carbon feedback has been described as the largest terrestrial feedback to climate change as well as one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Models predict that some portion of this release will be offset by increased arctic and boreal biomass, but the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets with serious societal and environmental consequences. In this dissertation I investigate the potential and actual response of Arctic and boreal carbon balance to climate change. First, I present estimates from 98 permafrost-region experts of the response of circumarctic biomass, wildfire, and hydrologic carbon flux to warming over the next several centuries. Because precise estimates of the factors driving arctic and boreal carbon balance are unlikely in the near future, these qualitative estimates provide a holistic summary of current scientific understanding and provide a framework for assessing uncertainty and risk. Assessments indicate that little agreement exists on the magnitude and even sign of change in high-latitude biomass, and that end-of-the-century organic carbon release from arctic rivers and collapsing coastlines could increase three-fold while carbon loss via burning could increase seven-fold. Second, I test the impact of permafrost collapse (thermokarst) on carbon and nutrient release from upland tundra on the North Slope of Alaska. The biogeochemical consequences of thermokarst are not adequately conceptualized or characterized to incorporate into numerical models, though thermokarst may impact a third of the permafrost region by the end of the century. I employ a coupled aquatic and terrestrial experimental design to address this knowledge gap, measuring the displacement of soil organic carbon, surface flux of COâ‚‚, CHâ‚„, and Nâ‚‚O, and hydrologic export of dissolved carbon and nutrients. Results show that thermokarst can stimulate or suppress ecosystem respiration depending on feature morphology; remove a large portion of ecosystem carbon; mobilize highly biodegradable dissolved organic carbon; disrupt the nitrogen cycle resulting in Nâ‚‚O production and hydrologic nitrogen losses; and influence offsite organic matter decomposition by the release of labile dissolved organic carbon nitrogen, and other nutrients. Spatial patterns of carbon and nutrient export from thermokarst suggest that upland thermokarst may be a dominant linkage between terrestrial and aquatic ecosystems as the permafrost region warms. I conclude that the strength of the permafrost climate feedback depends largely on coupled carbon and nutrient dynamics, which will interact with disturbance such as wildfire and thermokarst. My results indicate that three-quarters of permafrost carbon release could be avoided if human emissions are actively reduced, though the window of opportunity to keep that carbon in the ground is rapidly closing

    Choosing low-cost institutions in global governance

    Get PDF
    Contemporary global governance takes place not only through formal inter-governmental organizations and treaties, but increasingly through diverse institutional forms including informal inter-governmental organizations, trans-governmental networks, and transnational public–private partnerships. Although these forms differ in many ways, they are all what we call ‘low-cost institutions’ (LCIs): the costs of creating, operating, changing, and exiting them, and the sovereignty costs they impose, are substantially lower on average than those of treaty-based institutions. LCIs also provide substantive and political governance benefits based on their low costs, including reduced risk, malleability, and flexibility, as well as many of the general cooperation benefits provided by all types of institutions. LCIs are poorly-suited for creating and enforcing binding commitments, but can perform many other governance functions, alone and as complements to treaty-based institutions. We argue that the availability of LCIs changes the cost–benefit logic of institutional choice in a densely institutionalized international system, making the creation of new institutions, which existing research sees as the ‘last resort’, more likely. In addition, LCIs empower executive, bureaucratic, and societal actors, incentivizing those actors to favor creating LCIs rather than treaty-based institutions. The availability of LCIs affects global governance in multiple ways. It reduces the status quo bias of governance, changes its institutional and actor composition, enables (modest) cooperation in times of polarization and gridlock, creates beneficial institutional divisions of labor, and expands governance options. At the same time, the proliferation of LCIs reduces the focality of incumbent institutions, increasing the complexity of governance

    Riparian Corridors: A New Conceptual Framework for Assessing Nitrogen Buffering Across Biomes

    Get PDF
    Anthropogenic activities have more than doubled the amount of reactive nitrogen circulating on Earth, creating excess nutrients across the terrestrial-aquatic gradient. These excess nutrients have caused worldwide eutrophication, fundamentally altering the functioning of freshwater and marine ecosystems. Riparian zones have been recognized to buffer diffuse nitrate pollution, reducing delivery to aquatic ecosystems, but nutrient removal is not their only function in river systems. In this paper, we propose a new conceptual framework to test the capacity of riparian corridors to retain, remove, and transfer nitrogen along the continuum from land to sea under different climatic conditions. Because longitudinal, lateral, and vertical connectivity in riparian corridors influences their functional role in landscapes, we highlight differences in these parameters across biomes. More specifically, we explore how the structure of riparian corridors shapes stream morphology (the river's spine), their multiple functions at the interface between the stream and its catchment (the skin), and their biogeochemical capacity to retain and remove nitrogen (the kidneys). We use the nitrogen cycle as an example because nitrogen pollution is one of the most pressing global environmental issues, influencing directly and indirectly virtually all ecosystems on Earth. As an initial test of the applicability of our interbiome approach, we present synthesis results of gross ammonification and net nitrification from diverse ecosystems

    Distribution of Landscape Units Within Catchments Influences Nutrient Export Dynamics

    Get PDF
    Excess nutrients from agriculture have caused persistent eutrophication in aquatic ecosystems worldwide. Here, we present a conceptual framework for landscape management to achieve one or several water quality targets along the river continuum from headwaters to estuaries. Based on monitoring of representative headwaters and downstream reaches, we divide catchments into elementary landscape units defined by ecosystem properties and anthropogenic land use. We use a theoretical simulation to evaluate our hypothesis that the water-quality responses of redistributing these elementary units within the catchment will vary depending on the water quality targets (e.g., reduction in concentration or load). This landscape unit distribution (LUD) framework can efficiently assess the current ecohydrological functioning of a catchment and provide simple but robust predictions of its response to landscape management changes. Using simulated data, we show that different scenarios of landscape redistribution can allow attainment of one or several, but often not all desired water quality targets. Therefore, we recommend that water quality targets must be clearly defined and prioritized prior to designing landscape management strategies

    Riparian corridors: A new conceptual framework for assessingt nitrogen buffering across biomes

    Get PDF
    Anthropogenic activities have more than doubled the amount of reactive nitrogen circulating on Earth, creating excess nutrients across the terrestrial-aquatic gradient. These excess nutrients have caused worldwide eutrophication, fundamentally altering the functioning of freshwater and marine ecosystems. Riparian zones have been recognized to buffer diffuse nitrate pollution, reducing delivery to aquatic ecosystems, but nutrient removal is not their only function in river systems. In this paper, we propose a new conceptual framework to test the capacity of riparian corridors to retain, remove, and transfer nitrogen along the continuum from land to sea under different climatic conditions. Because longitudinal, lateral, and vertical connectivity in riparian corridors influences their functional role in landscapes, we highlight differences in these parameters across biomes. More specifically, we explore how the structure of riparian corridors shapes stream morphology (the river's spine), their multiple functions at the interface between the stream and its catchment (the skin), and their biogeochemical capacity to retain and remove nitrogen (the kidneys). We use the nitrogen cycle as an example because nitrogen pollution is one of the most pressing global environmental issues, influencing directly and indirectly virtually all ecosystems on Earth. As an initial test of the applicability of our interbiome approach, we present synthesis results of gross ammonification and net nitrification from diverse ecosystems

    Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer

    No full text
    International audienceNitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, rGW-LOCAL was 1.6, meaning the groundwater recharge area is almost twice as large as the topographically-defined catchment for any given point. The ratio rGW-LOCAL is sensitive to recharge conditions as well as topography and it could be used to compare controls on groundwater circulation within or between catchments

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation

    Full text link
    Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted

    Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation

    Full text link
    Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted

    Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    Get PDF
    International audienceThis study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities
    • …
    corecore