47 research outputs found

    Concepts and evolution of research in the field of wireless sensor networks

    Full text link
    The field of Wireless Sensor Networks (WSNs) is experiencing a resurgence of interest and a continuous evolution in the scientific and industrial community. The use of this particular type of ad hoc network is becoming increasingly important in many contexts, regardless of geographical position and so, according to a set of possible application. WSNs offer interesting low cost and easily deployable solutions to perform a remote real time monitoring, target tracking and recognition of physical phenomenon. The uses of these sensors organized into a network continue to reveal a set of research questions according to particularities target applications. Despite difficulties introduced by sensor resources constraints, research contributions in this field are growing day by day. In this paper, we present a comprehensive review of most recent literature of WSNs and outline open research issues in this field

    MMEDD: Multithreading Model for an Efficient Data Delivery in wireless sensor networks

    Get PDF
    Nowadays, the use of Wireless Sensor Networks (WSNs) is increasingly growing as they allow a large number of applications. In a large scale sensor network, communication among sensors is achieved by using a multihop communication. However, since the sensor is limited by its resources, sensors' operating systems are developed in order to optimize the management of these resources, especially the power consumption. Therefore, the hybrid operating system Contiki uses a low consumption layer called Rime which allows sensors to perform multihop sending with a low energy cost. This is favored by the implementation of lightweight processes called protothreads. These processes have a good efficiency/consumption ratio for monolithic tasks, but the management of several tasks remains a problem. In order to enable multitasking, Contiki provides to users a preemptive multithreading module that allows the management of multiple threads. However, it usually causes greater energy wastage. To improve multithreading in sensor networks, a Multithreading Model for an Efficient Data Delivery (MMEDD) using protothreads is proposed in this paper. Intensive experiments have been conducted on COOJA simulator that is integrated in Contiki. The results show that  MMEDD provides better ratio message reception rate/energy consumption than other architectures

    Distributed Fault-Tolerant Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are a set of tiny autonomous and interconnected devices. These nodes are scattered in a region of interest to collect information about the surrounding environment depending on the intended application. In many applications, the network is deployed in harsh environments such as battlefield where the nodes are susceptible to damage. In addition, nodes may fail due to energy depletion and breakdown in the onboard electronics. The failure of nodes may leave some areas uncovered and degrade the fidelity of the collected data. Therefore, establish a fault-tolerant mechanism is very crucial. Given the resource-constrained setup, this mechanism should impose the least overhead and performance impact. This paper focuses on recovery process after a fault detection phase in WSNs. We present an algorithm to recover faulty node called Distributed Fault-Tolerant Algorithm (DFTA).The performance evaluation is tested through simulation to evaluate some factors such as: Packet delivery ratio, control overhead, memory overhead and fault recovery delay. We compared our results with referenced algorithm: Fault Detection in Wireless Sensor Networks (FDWSN), and found that our DFTA performance outperforms that of FDWSN

    Toward a real-time TCP SYN Flood DDoS mitigation using Adaptive Neuro-Fuzzy classifier and SDN Assistance in Fog Computing

    Full text link
    The growth of the Internet of Things (IoT) has recently impacted our daily lives in many ways. As a result, a massive volume of data is generated and needs to be processed in a short period of time. Therefore, the combination of computing models such as cloud computing is necessary. The main disadvantage of the cloud platform is its high latency due to the centralized mainframe. Fortunately, a distributed paradigm known as fog computing has emerged to overcome this problem, offering cloud services with low latency and high-access bandwidth to support many IoT application scenarios. However, Attacks against fog servers can take many forms, such as Distributed Denial of Service (DDoS) attacks that severely affect the reliability and availability of fog services. To address these challenges, we propose mitigation of Fog computing-based SYN Flood DDoS attacks using an Adaptive Neuro-Fuzzy Inference System (ANFIS) and Software Defined Networking (SDN) Assistance (FASA). The simulation results show that FASA system outperforms other algorithms in terms of accuracy, precision, recall, and F1-score. This shows how crucial our system is for detecting and mitigating TCP SYN floods DDoS attacks.Comment: 16 page

    DSMAC: Privacy-Aware Decentralized Self-Management of Data Access Control Based on Blockchain for Health Data

    Get PDF
    In recent years, the interest in using wireless communication technologies and mobile devices in the healthcare environment has increased. However, despite increased attention to the security of electronic health records, patient privacy is still at risk for data breaches. Thus, it is quite a challenge to involve an access control system especially if the patient’s medical data are accessible by users who have diverse privileges in different situations. Blockchain is a new technology that can be adopted for decentralized access control management issues. Nevertheless, different scalability, security, and privacy challenges affect this technology. To address these issues, we suggest a novel Decentralized Self-Management of data Access Control (DSMAC) system using a blockchain-based Self-Sovereign Identity (SSI) model for privacy-preserving medical data, empowering patients with mechanisms to preserve control over their personal information and allowing them to self-grant access rights to their medical data. DSMAC leverages smart contracts to conduct Role-based Access Control policies and adopts the implementation of decentralized identifiers and verifiable credentials to describe advanced access control techniques for emergency cases. Finally, by evaluating performance and comparing analyses with other schemes, DSMAC can satisfy the privacy requirements of medical systems in terms of privacy, scalability, and sustainability, and offers a new approach for emergency cases

    WHISPER: A Location Privacy-Preserving Scheme Using Transmission Range Changing for Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoV) has the potential to enhance road-safety with environment sensing features provided by embedded devices and sensors. This benignant feature also raises privacy issues as vehicles announce their fine-grained whereabouts mainly for safety requirements, adversaries can leverage this to track and identify users. Various privacy-preserving schemes have been designed and evaluated, for example, mix-zone, encryption, group forming, and silent-period-based techniques. However, they all suffer inherent limitations. In this paper, we review these limitations and propose WHISPER, a safety-aware location privacy-preserving scheme that adjusts the transmission range of vehicles in order to prevent continuous location monitoring. We detail the set of protocols used by WHISPER, then we compare it against other privacy-preserving schemes. The results show that WHISPER outperformed the other schemes by providing better location privacy levels while still fulfilling road-safety requirements

    Toward a Real-Time TCP SYN Flood DDoS Mitigation Using Adaptive Neuro-Fuzzy Classifier and SDN Assistance in Fog Computing

    Get PDF
    The growth of the Internet of Things (IoT) has recently impacted our daily lives in many ways. As a result, a massive volume of data are generated and need to be processed in a short period of time. Therefore, a combination of computing models such as cloud computing is necessary. The main disadvantage of the cloud platform is its high latency due to the centralized mainframe. Fortunately, a distributed paradigm known as fog computing has emerged to overcome this problem, offering cloud services with low latency and high-access bandwidth to support many IoT application scenarios. However, attacks against fog servers can take many forms, such as distributed denial of service (DDoS) attacks that severely affect the reliability and availability of fog services. To address these challenges, we propose mitigation of fog computing-based SYN Flood DDoS attacks using an adaptive neuro-fuzzy inference system (ANFIS) and software defined networking (SDN) assistance (FASA). The simulation results show that the FASA system outperforms other algorithms in terms of accuracy, precision, recall, and F1-score. This shows how crucial our system is for detecting and mitigating TCP-SYN floods and DDoS attacks

    Intégration des Solutions Bio-inspirées pour une Gestion optimale dans les Réseaux de Capteur sans Fils

    No full text
    During the past few years, wireless sensor networks witnessed an increased interest in both the industrial and the scientific community due to the potential wide area of applications. However, sensors’ components are designed with extreme resource constraints, especially the power supply limitation. It is therefore necessary to design low power, scalable and energy efficient protocols in order to extend the lifetime of such networks. Cluster-based sensor networks are the most popular approach for optimizing the energy consumption of sensor nodes, in order to strongly influence the overall performance of the network. In addition, routing involves non negligible operations that considerably affect the network lifetime and the throughput. In this thesis, we addressed the clustering and routing problems by hiring intelligent optimization methods through biologically inspired computing, which provides the most powerful models that enabled a global intelligence through local and simple behaviors. We proposed a distributed clustering approach based on the nest-sites selection process of a honeybee swarm. We formulated the distributed clustering problem as a social decision-making process in which sensors act in a collective manner to choose their cluster heads. To achieve this choice, we proposed a multi- objective cost-based fitness function. In the design of our proposed algorithm, we focused on the distribution of load balancing among each cluster member in order to extend network lifetime by making a tradeoff between the energy consumption and the quality of the communication link among sensors. Then, we proposed a centralized cluster-based routing protocol for wireless sensor networks by using the fast and efficient searching features of the artificial bee colony algorithm. We formulated the clustering as a linear programming problem and the routing problem is solved by proposing a cost-based function. We designed a multi-objective fitness function that uses the weighted sum approach, in the assignment of sensors to a cluster. The clustering algorithm allows the efficient building of clusters by making a tradeoff between the energy consumption and the quality of the communication link within clusters while the routing is realized in a distributed manner. The proposed protocols have been intensively experimented with a number of topologies in various network scenarios and the results are compared with the well-known cluster-based routing protocols. The results demonstrated the effectiveness of the proposed protocols.Au cours de ces dernières années, les réseaux de capteurs sans fils ont connu un intérêt croissant à la fois au sein de la communauté scientifique et industrielle en raison du large potentiel en terme d’applications offertes. Toutefois, les capteurs sont conçus avec d’extrêmes contraintes en ressources, en particulier la limitation de l’énergie. Il est donc nécessaire de concevoir des protocoles efficaces, évolutifs et moins consommateur d’énergie afin de prolonger la durée de vie de ces réseaux. Le clustering est une approche très populaire, utilisée pour l’optimisation de la consommation d’énergie des capteurs. Cette technique permet d’influencer fortement la performance globale du réseau. En outre, dans de tels réseaux, le routage génère un nombre assez élevé d’opérations non négligeables qui affectent considérablement la durée de vie du réseau ainsi que le débit offert. Dans cette thèse, nous nous sommes intéressés d’une part aux problèmes de clustering et de routage en utilisant des méthodes d’optimisation inspirées de certaines sociétés biologiques fournissant des modèles puissants qui conduisent à l’établissement d’une intelligence globale en se basant sur des comportements individuels très simples. Nous avons proposé une approche de clustering distribuée basée sur le processus de sélection des sites de nidification chez les colonies d’abeilles. Nous avons formulé le problème de clustering distribuée comme un processus social de prise de décision dans lequel les capteurs agissent d’une manière collective pour choisir des représentants au sein de leurs clusters respectifs. Le protocole proposé assure une distribution de l’équilibrage de charge entre les membres de chaque cluster afin de prolonger la durée de vie du réseau en faisant un compromis entre la consommation d’énergie et la qualité du canal de communication. D’autre part, nous avons proposé un protocole de routage basé sur des clusters en utilisant un algorithme inspiré du phénomène de butinage des abeilles. Nous avons formulé le problème de clustring comme un problème de programmation linéaire alors que le problème du routage est résolu par une fonction de coûts. L’algorithme de clustering permet la construction efficace des clusters en faisant un compromis entre la consommation d’énergie et la qualité du canal communication au sein des clusters tandis que le routage est réalisé de manière distribuée. Les protocoles proposés ont été intensivement expérimentés sur plusieurs topologies dans différents scénarios de réseaux et comparés avec des protocoles bien connus de clustering et routage. Les résultats obtenus démontrent l’efficacité des protocoles proposés

    Virtual Machines Performance in HPC Environments

    No full text
    International audienc
    corecore