
179
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

MMEDD: Multithreading Model for an Efficient
Data Delivery in wireless sensor networks

Blaise Omer Yenke1, Damien Wohwe Sambo2, Ado Adamou Abba Ari3 and Abdelhak Gueroui4

1 2LASE Laboratory, University of Ngaoundéré, Cameroon

3Mathematics and Computer Science Department, FS, University of Maroua, Cameroon

3 4LI-PaRAD Laboratory, Université Paris Saclay, University of Versailles Saint-Quentin-en-Yvelines, France

Abstract: Nowadays, the use of Wireless Sensor Networks
(WSNs) is increasingly growing as they allow a large number of
applications. In a large-scale sensor network, data transmission
among sensors is achieved by using a multihop communication
model. However, since its resources limit the sensor, sensors'
Operating Systems (OSs) are developed in order to optimize the
management of these means, especially the power consumption.
Therefore, the hybrid operating system Contiki uses a low
consumption layer called Rime, which allows sensors to perform
multihop sending with a low energy cost. This is favored by the
implementation of lightweight processes called protothreads. These
processes have a good efficiency/consumption ratio for monolithic
tasks, but the management of several tasks remains a problem. In
order to enable multitasking, Contiki provides to users a preemptive
multithreading module that allows the management of multiple
threads. However, it usually causes greater energy wastage. To
improve multithreading in sensor networks, a Multithreading Model
for an Efficient Data Delivery (MMEDD) using protothreads is
proposed in this paper. Intensive experiments have been conducted
on COOJA simulator that is integrated in Contiki. The results show
that MMEDD provides better ratio message reception rate/energy
consumption than other architectures.

Keywords: Multithreading, Multitasking, Protothreads, WSNs,
COOJA, MMEDD.

1. Introduction

The technological developments carried out in wireless
networking have created a new generation of networks
constituted of small entities called sensors, which are capable
of gathering information from the environment in spite of
their limited computing, memory and storage resources [1].
In addition, progress in microelectronics and wireless
communications allowed the production of sensors in
reasonable costs [2, 3]. As the sensors have increasingly
small sizes, their communication range remains limited. In
order to cover a large area, sensors are deployed and
connected to each other, thereby forming a Wireless Sensor
Network (WSN). A WSN usually consists of a deployment of
one or more static or mobile sink nodes and a number of
sensor nodes on a physical environment [4, 5]. In such a
network, each node is able to gather, process physical
information and transmit the gathered data to a remote Base
Station (BS) through a sink-node [6].
However, sensors are designed with resource constraints such
as a restricted computing capacity; reduced memory size and
storage; weak range of communication; low bandwidth and
the limited amount of energy [7]. The energy resource is the
most important parameter to be considered in the design of a
WSN since it first defines the sensor’s lifetime and then the
whole network lifetime [1, 8].

Behind the energy constraint, the limited memory size and
storage constraints overstrain sensors to execute light and not
complex programs [9]. The OS embedded in the sensor
realizes the management of these constraints. Two main types
of OS exist in Wireless Sensor Networks (WSNs): Multitask
(thread-based) and Event (event-based) systems [10]. The
main problem of Multitask systems is the allocation of
memory to different processes, but they permit the
simultaneous execution of tasks with a non-negligible energy
wastage. Nevertheless, event-based systems enable a better
memory management, thus observe low power consumption,
but do not allow long treatment and complex tasks [11].
In order to reduce the disadvantages of these systems, hybrid
systems such as Contiki OS have been built [12]. The hybrid
conception of Contiki allows to observe low energy
consumption like event-based system due to its lightweight
processes protothreads, which are designated for the
multitask treatment. Contiki supplies to developers an
optional multithreading library. However, it requires more
memory resource and hence will consume a lot of energy.
In this paper, in order to reduce the energy consumption
during a multithreading treatment, a multithreading model for
an efficient data delivery in WSNs called MMEDD is
proposed. To achieve the proposal, the lightweight
protothread included in Contiki is used. The performance
analysis shows that the proposed architecture has
approximately the same data delivery rate than the threaded
model. Moreover, the proposal enables less energy
consumption than the other models. In short, our main tasks
can be summarized as follows:

• Evaluation of the energy consumed during the data
delivery, using the native multithreading library;

• Comparison of the obtained results with those without
multithreading;

• Modelling an architecture for the multithreading by
using protothreads instead of threads;

• Simulation of the MMEDD in order to highlight its
performance.

The rest of this paper is organized as follows: Section 2
presents sensors’ architectures and OS; Section 3 formulates
the problem of using multithreading in WSN, and provides
the performance analysis of data delivery and the energy
consumption; in Section 4, the design goals and the
description of the MMEDD are given; an experimental
validation of our architecture is provided in Section 5;
conclusion and directions for future work are presented in
Section 6.

180
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

2. Sensors' Architectures and OS

In this section, we first discuss about WSNs’ architectures
especially the different types of WSNs. Then, some existing
OS dedicated to sensors are reviewed.

2.1 WSNs' architectures

A WSN can be defined as the combination of two main types
of sensor nodes within the same network: the simple node
and the gateway node [1, 7]. The simple nodes gather
information from the sensing field and transfer the gathered
data to the gateway nodes, which are linked to a remote BS
via Internet or a LAN.
Communication within the sensors’ field is done in a single
or multi hop manner. Communication is done in multihop
when two distant nodes communicate through an
intermediate node while communication is done in a single-
hop when there is no intermediate node [3]. The architecture
of WSN is directly linked to the configuration of the sensor
field. Ari et al. [1] present two main architectures in WSNs:
flat architectures and hierarchical architectures.
In flat architecture, apart from the sink node, other nodes are
homogeneous. Nodes communicate with the sink either in
single or in multihop manner. Moreover, large-scale sensor
networks usually use hierarchical architectures. In these
architectures, the network is subdivided into several groups
of sensors, usually sub-networks called clusters. A special
node called Cluster Head (CH) represents each cluster.
Interesting studies have been proposed for cluster formation
and CH elections in WSNs [13, 14]. CH has to aggregate
and/or compress the collected data and transfer the
aggregated data to sink [15, 16], according to secured routing
protocols such as the work proposed in [17].

2.2 Sensors' OS

In a WSN, an OS is defined as a light layer of software that is
located between the hardware and the application, which
enables basic programming abstractions for developing
applications [2]. The main aim of OS for WSNs is to allow
applications to communicate with material resources, to
schedule and prioritize tasks, and to ensure the regulation
between conflict of applications and services. Operating
systems’ functionalities include: power and memory
management; file management; networking communication;
and programming environments that allow building
applications.
Traditionally, OS are classified as single-task or as
multitasking OS. Single-task OS executes one task at a
specific time whereas multitasking OS can process many
tasks simultaneously. The multitasking OS allows a sensor
node to receive data from the sensing unit and to deliver data
in parallel. However, a multitasking OS requires a large
amount of memory, but sensor nodes are limited by its
resources [2]. TinyOS [18] and Contiki [12] are the most
used OS specifically designed for sensors [19]. TinyOS is an
event-driven OS, its middleware supports time
synchronization, routing, data aggregation, localization, radio
communication, task scheduling, I/O processing, etc. The
multitask is implemented in TinyOS in the TOSThread
module. TinyOS is designed to run on equipment’s that have
very low memory capacity [18]. Moreover, Contiki is a
hybrid-driven OS combining event and thread functions.
Contiki observes a small memory footprint as TinyOS due to

the use of a lightweight process called protothread. The
multitasking management is made possible through a
multithreading module and its integration is optional because
it uses more memory resources.
Apart of TinyOS and Contiki systems, other OS for WSNs
exist, based most of the time on a multi-threaded semantic
model. However, these systems do not allow low energy
consumption because they use locking mechanisms to
achieve mutual exclusion of shared variables, while TinyOS
and Contiki use an event-based scheduler without
preemption. In the literature the following systems can be
found: Nano-Qplus [10], PAVENET OS [10], SOS [20],
RETOS [21], LiteOS [22], Nano-RK [23], etc. Moreover,
Liu et al. [24] have done a multithreaded comparison of the
RAM usage between the systems TinyOS and Contiki. They
show that multithreading in Contiki is lighter than the
TOSThread of TinyOS. In the rest of the document we focus
on Contiki OS because of its protothreads properties and the
enabled multithreading performance.

3. Multithreading in WSNs

This section describes in detail the problem of using the
multithreading in a WSN. An energy consumption analysis
between a classical architecture and that using the
multithreading module is also carried out.

 3.1 Problem statement

The problem of power and resource management is
overriding for WSNs. In traditional multithreaded OS, the
size of each stack is ingeniously reserved in order to avoid
memory overflow and memory wastage. The main problem
of multithreaded OS is that every created thread runs in a
pre-reserved stack heuristically. Then if the reserved stack
size is too small for a running application, it will generate a
memory overflow. To solve this problem, the stack size
needs to be assigned a large value that can meet the
requirement of the worst case [24]. However, when the
thread does not require a large stack size, the memory space
reserved will not be efficiently used, leading to high energy
wastage as shown on Figure 1.

 3.2 Performance analysis

This Section presents the experiments carried out on the
Rime layer of Contiki OS by analysing the consequences of
using threads for data delivery in WSN.

Figure 1. Thread implementation

181
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

3.2.1 Adopted methodology

In order to perform the analysis of the implemented thread
module for data delivery in Contiki, we consider an example
of a multihop communication by using the default library
multihop.h of the Rime layer. To conduct the analysis, we
consider a central node (inter) that will receive packets sent
by some nodes (sender) and transfer these packets to another
receiver-node (receiver). The idea is that a sender-node
should not communicate directly with a receiver-node due to
their limited communication range like highlighted in Figure
2. Thus, the sender-node transmits a packet in multihop
through inter-node. Simulation was realized with the
simulator COOJA integrated to Contiki-2.7. Sky-mote nodes
have been used and the coordinates given in Table 1 provide
the random position.

Figure 2. Experimental network

Firstly, we have used the classical architecture in which the
retransmission of packets by the inter-node sequentially
follows the FIFO scheduling mechanism as shown on Figure
3. Secondly, we have modified the library multihop.h so that,
after receiving a packet to be transferred, the inter-node,
creates a thread responsible for delivering packets to the
receiver-node. The duty cycling implemented is defined by
the ContikiMAC which is set as default by COOJA. The
multi hop thread-based data transfer is presented in Figure 4.

Figure 3. Multihop transfer using the Classical architecture

For practical purposes, the average time between two cycles
of the sender-node is fixed at 2ms. A cycle corresponds to the
transmission of a sender. We have varied the number of
senders between 1 and 15. The number of senders is set to 15
in order to avoid sensors redundancy on the considered
sensor field. We conducted more than 10 tests over 30
cycles. The results were quite the same. Then, we analysed
the number of received messages and the energy
consumption of inter-node using the classical and the thread-
based architecture.

Table 1. Nodes' Coordinates
Node id Axis (x-x’) Axis (y-y’)
1 95.099 55.277
2 63.892 33.496
3 63.413 50.411
4 105.958 86.986
5 68.541 80.854
6 77.718 91.932
7 76.697 62.781
8 88.096 71.909
9 70.237 54.939
10 95.685 92.837
11 95.403 81.934
12 68.188 45.108
13 101.094 81.764
14 70.049 36.727
15 73.013 50.47
16 82.314 68.921
17 123.692 32.81

Figure 4. Thread implementation

3.2.2 Reception message rate

Results on Table 2 present the number of messages received
by the inter-node over 30 cycles between classical and the
thread-based architectures. From the data on Table 2, the
reception rate for thread-based and classical architecture was
computed. We obtained 72.33% for the thread-based
architecture against 63.74% for the classical architecture.
This shows that the data delivery using thread-based
architecture achieves 8.59% messages more than classical
architecture. These results are clearly plotted in Figure 5.
This difference of performance is explained by the fact that
the thread-based architecture receives and retransmits faster
than the classical architecture.

Table 2. Amount of received message on 30 cycles –
Classical Vs Thread-based

Senders Msg-Send Classical Threads
1 30 30 30
2 60 42 56
3 90 57 70
4 120 90 94
5 150 90 120
6 180 134 151
7 210 146 165
8 240 177 179
9 270 179 202
10 300 172 205
11 330 201 213
12 360 198 218
13 390 189 177
14 420 169 237
15 450 188 218

182
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

Figure 5. Comparison of the amount of received messages

on 30 cycles – Classical Vs Thread-based

3.2.3 Energy model

We adopted the energy model obtained by Sehgal [25]
(Equation 1), which allow estimating the energy consumption
of the inter-node.

Where:
• rx, tx and ON respectively represent the time

passing by the radio in the receive mode, transmit
mode and the Cpu_ON;

• γ = 4096 represents the number of ticks per second;
• runtime is evaluated in seconds;
• i = 20 mA is a pre-measured value available on the

data sheet;
• v = 3V is the approximated value of Sky-mote

operational voltage.

Table 3 shows the results in milliWatts (mW) of the energy
consumption on the inter-node in the classical as well as in
the thread-based architectures. The average energy
consumption between these two architectures is slightly the
same (7.3780 mW for classical architecture against 7.3074
mW for the thread-based architecture).

Table 3. Energy consumption on 30 cycles – Classical Vs
Thread-based

Senders Classical Threads
1 2.5956 4.5877
2 3.1021 3.4757
3 3.0470 5.7267
4 3.9621 4.70905
5 4.5368 5.1678
6 7.2492 6.4264
7 9.3301 9.6382
8 7.9583 10.2538
9 6.1979 8.1779
10 8.4618 9.1186
11 10.3861 10.1320
12 12.9091 9.3255
13 12.8760 8.0336
14 8.6349 5.5132
15 9.4236 9.3250

The overlap observed in Figure 6 does not show a greater
difference between the classical and the thread-based
architecture. We observe that on average, the classical
architecture consume less energy than the thread-based
architecture, when the number of senders is less than 10.
However, when the number of senders increases (more than
10), the classical model has higher energy consumption than
the thread-based. This can be explained by the fact that, on

classical architecture, the received messages have to be
forwarded to receiver in FIFO order and then queued. The
limited size of RAM on WSN influences the number of
messages that can be stored on the queue.

Figure 6. Comparison of the energy consumption on 30

cycles – Classical Vs Thread-based

The low energy consumption observed (less than 10 senders)
on the classical architecture is explained by the fact that each
process implemented in Contiki is a protothread that have a
smaller memory footprint than thread, because protothreads
created in the same context share the same memory space
unlike threads like shown in Figure 7.

Figure 7. Comparison of the energy consumption on 30

cycles – Classical Vs Thread-based

4. The proposed approach

This section describes the proposed Multithreading Model
for an Efficient Data Delivery (MMEDD). Design goals and
the proposed multithreading model are presented hereinafter.

 4.1 Design goals

In order to have a multithreaded architecture with a low
power consumption, we focused on the characteristics of
protothreads (see Figure 6). The proposal aims at providing
an efficient model that has noticeably the same performance
than multithreaded, which consumes less energy. Instead
using several small stacks for each thread, we need to
implement a share memory during run-time like in the case of
the protothreads in Contiki OS.

 4.2 Multithreading model

Our multithreading model operates as follows: when a node
receives a packet for retransmission, it creates another
process that will be responsible for retransmission. Knowing
that in the Contiki system, a process is equivalent to a
protothread, the first protothread PT_recv is responsible for
listening on the communication channel. Upon reception of a
request from a sender-node, if that message concerns a
retransmission, the protothread PT_recv then creates a

183
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

second protothread PT_send in charge of delivering the
message to the receiver-node. The proposed model is given
in Figure 8.

Figure 8. Multihop transfer using the MMEDD

The flow chart given in Figure 9 shows in detail the different
features of the inter-node in the MMEDD architecture. At
first, the node starts the listening on a communication
channel with the multihop_open() method, the packetbuffer
structure informs when a new arrival packet is or not
dedicated to transmission. If so, the call_back1() method is
then executed and triggers the protothread PT_send using the
process_start() method and making the data delivery with the
unicast_send() method before stopping. The protothread
PT_recv is started from the beginning of the application.

Figure 9. Architecture

For more details, the following paragraph describes the
behavior of each component of the flowchart of Figure 9.
At the beginning, when a node is started, the OS creates a
protothread PT_recv which opens a connection via a channel
such as the sockets on traditional network, by calling the with
multihop_open() function. Opening a connection on Rime
needs to define a callback function and a channel number

(numbers on 16 bits, numbers less than 127 are kernel
reserved). Only two nodes using the same channel can
communicate each other. It is important to note that any node
can be an inter-node. When an inter-node receives a packet
through the packetbuffer structure, it checks the value of the
field PACKETBUF_ADDR_ERECEIVER (address of the
final receiver) and compares it with its own address. Let us
remind that this is achieved by multihop_open(). Two cases
are possible:
- The final receiver is the inter-node: No need to forward

the packet, the packet has reached its destination, the
PT_send is not called and PT_recv continues listening for
incoming message.

- The final receiver and the inter-node are different: The
ingoing packet has to be forwarded, the callback() function
is therefore executed. This means that PT-recv has to make
a forward. To achieve that, the packetbuffer is modified by
changing the value of the field
PACKETBUF_ADDR_SENDER (immediate sender
address is changed to inter-node address) and the also the
value of the field PACKETBUF_ADDR_RECEIVER
(immediate receiver becomes the final receiver).
Immediately after, the process_start() function is called.
This function executes process_post_synch() which is in
charge to create PT_send while assigning it a synchronous
event. At that step, the PT_recv steel listening on the open
channel, while the protothread PT_send sends the modified
packetbuffer to the final receiver using the unicast_send()
function. PT_send is immediately destroyed at the end of
its task by the process_end() function in order to reduce
energy wastage of the inter-node.

At the final step (END) PT_recv returns on listening for
incoming messages.

5. Simulation and Discussion

In this section, we present the experimental results of the
MMEDD architecture by considering the same conditions
described in Section 3.2.1. Experiments were conducted in
order to evaluate message reception rate and the energy
consumption in classical, thread-based and MMEDD
architectures.

 5.1 Message reception rate

Table 4 presents the amount of messages received by the
inter-node in classical, thread-based and MMEDD
architectures.

Table 4. Amount of received message on 30 cycles –
Classical - Thread-based - MMEDD

Senders Msg-Send Classical Threads MMEDD
1 30 30 30 30
2 60 42 56 50
3 90 57 70 66
4 120 90 94 94
5 150 90 120 110
6 180 134 151 157
7 210 146 165 172
8 240 177 179 192
9 270 179 202 198
10 300 172 205 220
11 330 201 213 208
12 360 198 218 203
13 390 189 177 186
14 420 169 237 187
15 450 188 218 218

184
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

5.1.1 Classical vs MMEDD

In this test, we compared the number of received messages
both in the classical and MMEDD architectures. Data from
Table IV show that the MMEDD architecture receives more
messages than the classical architecture. This result is clearly
plotted in Figure 10. Indeed, our proposal observes a
reception rate of 70.95% against 63.74% for the classical
architecture, i.e., a gain of 7.21%. The visible gain is allowed
by the fact that, the MMEDD quickly deals more with
different requests received by its multithreaded structure
therefore faster transfer packets to the recipient.

Figure 10. Comparison of number of received message on

30 cycles – Classical Vs MMEDD

5.1.2 Thread vs MMEDD

In Table 4, when considering the number of received
messages between the thread-based architecture and the
MMEDD, we found that these two architectures have almost
identical performances (72.33% for the thread-based and
70.95% for the MMEDD). The intertwining between the two
curves observed in Figure 11 shows that the thread-based and
the MMEDD architectures have slightly the same reception
rate (difference of 1.38%). This result is explained by the fact
that these two architectures are based on multithreaded
structures.

Figure 11. Comparison of number of received message on

30 cycles – Thread-based Vs MMEDD

 5.2 Energy consumption

The analysis of the energy consumption in the MMEDD
architecture was made by considering the energy model given
in Equation 1. The obtained values for the energy consumed
are listed in Table 5.

Table 5. Energy consumption on 30 cycles – Classical –
Thread - MMEDD

Senders Classical Threads MMEDD
1 2.5956 4.5877 1.6882
2 3.1021 3.4757 2.8172
3 3.0470 5.7267 3.6935
4 3.9621 4.70905 3.8473
5 4.5368 5.1678 3.8130
6 7.2492 6.4264 6.2966
7 9.3301 9.6382 8.6741
8 7.9583 10.2538 6.6649
9 6.1979 8.1779 5.2931
10 8.4618 9.1186 11.5380
11 10.3861 10.1320 5.2282
12 12.9091 9.3255 9.3529
13 12.8760 8.0336 10.4199
14 8.6349 5.5132 7.4984
15 9.4236 9.3250 9.8375

5.2.1 Classical vs MMEDD

In Table 5 the values of energy consumption in mW between
classical and MMEDD architectures are presented. It can be
seen that, in most cases the MMEDD observes lower energy
consumption, for an average energy consumption of 6.4441
mW for MMEDD and 7.3780 mW for classical architecture.
It can be observed that the MMEDD less consumes energy
than the classical architecture. This can be explained by the
fact that the two architectures implement protothreads that
use less memory because sharing a same memory space, but
MMEDD delivers messages more quickly. Figure 12
provides the plots of these results.

Figure 12. Comparison of energy consumption on 30 cycles

– Classical Vs MMEDD

5.2.2 Thread vs MMEDD

Table 5 also presents the values of the energy consumption
between the thread-based and the MMEDD architectures. We
note that the MMEDD consumes in general less energy than
the thread-based. The average energy consumption of the
thread-based is 7.3074 mW and 6.4441 mW for the MMEDD
architecture. Thus, the thread-based architecture consumes on
average 0.8633 mW more than the MMEDD architecture.
The different values of energy consumption are plotted on
Figure 13. It can be observed that the energy consumption in
the MMEDD architecture is generally less than the
consumption enabled by the thread-based architecture.

185
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

Figure 13. Comparison of energy consumption on 30 cycles

– Thread-based Vs MMEDD

 5.3 Message reception rate / Energy consumption

This subsection presents the efficiency of the different
architectures namely classical, thread-based and MMEDD,
by measuring the ratio between the message reception rate
and the energy consumption. The formula given in Equation
2 performs the reception rate over the energy consumption.

Where:
• TM/E represents the average of message reception rate

over the energy consumption;
• ri is the amount of received messages with i senders
• ei represents the energy consumption of inter-node

with i senders
• n is the number of senders (15)

Table 6 gives the values for each number of senders, the ratio
between reception message rate and the associated energy
consumption (ri /ei).

Table 6. Message reception rate over the energy
consumption on 30 cycles – Classical – Thread - MMEDD
Senders Classical Threads MMEDD
1 11,5580 6,5392 17,7704
2 13,5392 16,1118 17,7481
3 18,7069 12,2234 17,8692
4 22,7152 19,9615 24,4327
5 19,8377 23,2207 28,8486
6 18,4847 23,4968 24,9340
7 15,6482 17,1193 19,8291
8 22,2409 17,4569 28,8076
9 28,8807 24,7007 37,4071
10 20,3266 22,4815 19,0674
11 19,3527 21,0225 39,7842
12 15,3380 23,3767 21,7044
13 14,6784 22,0324 17,8504
14 19,5717 42,9877 24,9386
15 19,9499 23,3780 22,1601

Results from Table 6 show that MMEDD has a better ratio
message reception rate/energy consumption than thread-
based and classical architectures. The average ratio message
reception rate/energy consumption for classical, thread-
based and MMEDD architectures is represented by diagrams
in Figure 14. It can be observed that MMEDD performed
better than the others.

Figure 14. Comparison of the message reception rate over

energy consumption on 30 cycles – Classical - Thread based
– MMEDD

6. Conclusions and Future Works

In this paper, we defined a new concept of multithreading for
data delivery in WSNs. To achieve this, we used the
multihops sending to simulate the multitasking in the Contiki
operating system. First, experiments were conducted on
classical and thread-based architectures. The results obtained
during these experiments have shown that the thread-based
architecture has better performance in data processing speed
compared to the classical architecture (72.33% and 63.74%
respectively). In the case of energy analysis, the thread-based
architecture is greedier than the classical architecture.
However, when the multitasking is important, the energy
consumption of the thread-based architecture joins the one
obtained in the classical architecture. According to these
results, we modelled the MMEDD architecture that is a
thread-based architecture.
Furthermore, instead of threads that use more memory, we
integrate protothreads. To achieve this, two protothreads
were designed. The first is responsible for reception and the
second is responsible for transmission of packets to the
destination. The large experiments conducted show that the
proposed MMEDD architecture has a better power message
delivering than the classical (7.21% more) and substantially
equal to the thread-based architecture. The used protothreads
that are lightweight processes implemented in Contiki
favoured a lower consumption than classical and thread-
based architectures. Finally, the results show that MMEDD
provides better ratio message reception rate/energy
consumption than classical and thread-based architectures.
Future works will investigate the use of other criteria such as
the duty cycling, the loss of local variables by protothreads
after crash.

7. Acknowledgement

The authors would like to thank the editor and the
anonymous reviewers for their insightful comments and
remarks that lead to improvement of the content and
presentation of the paper.

References

[1] A. A. A. Ari, A. Gueroui, N. Labraoui, and B. O. Yenke,
“Concepts and evolution of research in the field of wireless
sensor networks,” International Journal of Computer
Networks & Communications, Vol. 7, No. 1, pp. 81–98,
2015.

186
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

[2] W. Dargie and C. Poellabauer, “Fundamentals of wireless

sensor networks: theory and practice”. John Wiley & Sons,
2010.

[3] E. T. Fute and E. Tonye, “Modelling and self-organizing in
mobile wireless sensor networks: Application to fire
detection,” International Journal of Applied Information
Systems, IJAIS, New York, USA, Vol. 5, No. 3, 2013.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
diffusion: a scalable and robust communication paradigm for
sensor networks,” in Proceedings of the 6th annual
international conference on Mobile computing and
networking. ACM, pp. 56–67, 2000.

[5] R. de Fréin, R. Loomba, and B. Jennings, “Selecting energy
efficient cluster-head trajectories for collaborative mobile
sensing,” in IEEE Global Communications Conference
(GLOBECOM). IEEE, pp. 1–7, 2015.

[6] A. A. A. Ari, B. O. Yenke, N. Labraoui, and A. Gueroui,
“Energy efficient clustering algorithm for wireless sensor
networks using the ABC metaheuristic,” in 2016
International Conference on Computer Communication
and Informatics (ICCCI), Coimbatore, Tamilnadu, India,
IEEE, pp. 1–6, 2016.

[7] C. Titouna, M. Aliouat, and M. Gueroui, “FDS: fault detection
scheme for wireless sensor networks,” Wireless Personal
Communications, Vol. 86, No. 2, pp. 549–562, 2016.

[8] N. Labraoui, M. Gueroui, and L. Sekhri, “On-off attacks
mitigation against trust systems in wireless sensor networks,”
Computer Science and Its Applications, Springer, pp. 406–
415, 2015.

[9] J. P. L. Licudis, J. C. Abdala, G. G. Riva, and J. M.
Finochietto, “Flexible prototyping for ad hoc wireless sensor
network protocols,” in 40th Jornadas Argentinas de
Informtica (JAIIO), Cordoba, Argentina, 2011.

[10] L. Saraswat and P. S. Yadav, “A comparative analysis of
wireless sensor network operating systems,” International
Journal of Engineering and Technoscience, Vol. 1, No. 1, pp.
41–47, 2010.

[11] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
simplifying event-driven programming of memory-
constrained embedded systems,” in Proceedings of the 4th
international conference on Embedded networked sensor
systems, ACM, pp. 29–42, 2006.

[12] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki-a lightweight
and flexible operating system for tiny networked sensors,” in
Local Computer Networks, 29th Annual IEEE International
Conference, pp. 455–462, 2004.

[13] G. Wang and G. Cho “Securing Cluster Formation and Cluster
Head Elections in Wireless Sensor Networks”, International
Journal of Communication Networks and Information
Security (IJCNIS) Vol. 6, No. 1, pp. 70-87, 2014.

[14] A. A. A. Ari, B. O. Yenke, N. Labraoui, I. Damakoa, A.
Gueroui, “A power efficient cluster-based routing algorithm
for wireless sensor networks: Honeybees swarm intelligence
based approach”, Journal of Network and Computer
Applications, Elsevier, Vol. 69, pp. 77-97, 2016.

[15] N. Labraoui, M. Gueroui, M. Aliouat, and J. Petit, “Reactive
and adaptive monitoring to secure aggregation in wireless
sensor networks,” Telecommunication systems, Vol. 54, No.
1, pp. 3–17, 2013.

[16] A. A. A. Ari, A. Gueroui, N. Labraoui, B. O. Yenke, C.
Titouna and I. Damakoa, “Adaptive Scheme for Collaborative
Mobile Sensing in Wireless Sensor Networks: Bacterial
Foraging Optimization approach,” in Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2016 IEEE 27th
Annual International Symposium, Valencia, Spain, IEEE
pp.1-6, 2016

[17] S. Sahraoui and S. Bouam, “Secure Routing Optimization in
Hierarchical Cluster-Based Wireless Sensor Networks”,
International Journal of Communication Networks and

Information Security (IJCNIS) Vol. 5, No. 3, pp. 178- 185,
2013.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.
Pister, “System architecture directions for networked
sensors,” ACM SIGOPS operating systems review, ACM,
Vol. 34, No. 5, pp. 93–104, 2000.

[19] T. Reusing, “Comparison of operating systems tinyos and
contiki,” Sens. Nodes-Operation, Netw. Appli.(SN), Vol. 7,
2012.

[20] C. -C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes,” in
Proceedings of the 3rd international conference on Mobile
systems, applications, and services. ACM, pp. 163–176,
2005.

[21] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C.
Yoon, “Retos: resilient, expandable, and threaded operating
system for wireless sensor networks,” in Information
Processing in Sensor Networks, IPSN 2007. 6th International
Symposium, IEEE, pp. 148–157, 2007.

[22] V. Vanitha, V. Palanisamy, N. Johnson, and G. Aravindhbabu,
“Liteos based extended service oriented architecture for
wireless sensor net-works,” International Journal of Computer
and Electrical Engineering, Vol. 2, No. 3, p. 432-436, 2010.

[23] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: an energy-
aware resource-centric rtos for sensor networks,” in Real-
Time Systems Symposium, RTSS 2005, 26th IEEE
International, pp. 1—10, 2005.

[24] X. Liu, K. M. Hou, C. de Vaulx, J. Xu, J. Yang, H. Zhou, H.
Shi, and P. Zhou, “Memory and energy optimization
strategies for multithreaded operating system on the resource-
constrained wireless sensor node”, Sensors, Vol. 15, No. 1,
pp. 22–48, 2014.

[25] A. Sehgal, “Using the contiki cooja simulator,” Computer
Science, Jacobs University Bremen Campus Ring, Technical
Report, 2013.

