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Abstract: Nowadays, the use of Wireless Sensor Networks 
(WSNs) is increasingly growing as they allow a large number of 
applications. In a large-scale sensor network, data transmission 
among sensors is achieved by using a multihop communication 
model. However, since its resources limit the sensor, sensors' 
Operating Systems (OSs) are developed in order to optimize the 
management of these means, especially the power consumption. 
Therefore, the hybrid operating system Contiki uses a low 
consumption layer called Rime, which allows sensors to perform 
multihop sending with a low energy cost. This is favored by the 
implementation of lightweight processes called protothreads. These 
processes have a good efficiency/consumption ratio for monolithic 
tasks, but the management of several tasks remains a problem. In 
order to enable multitasking, Contiki provides to users a preemptive 
multithreading module that allows the management of multiple 
threads. However, it usually causes greater energy wastage. To 
improve multithreading in sensor networks, a Multithreading Model 
for an Efficient Data Delivery (MMEDD) using protothreads is 
proposed in this paper. Intensive experiments have been conducted 
on COOJA simulator that is integrated in Contiki. The results show 
that MMEDD provides better ratio message reception rate/energy 
consumption than other architectures. 
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1. Introduction 
 

The technological developments carried out in wireless 
networking have created a new generation of networks 
constituted of small entities called sensors, which are capable 
of gathering information from the environment in spite of 
their limited computing, memory and storage resources [1]. 
In addition, progress in microelectronics and wireless 
communications allowed the production of sensors in 
reasonable costs [2, 3]. As the sensors have increasingly 
small sizes, their communication range remains limited. In 
order to cover a large area, sensors are deployed and 
connected to each other, thereby forming a Wireless Sensor 
Network (WSN). A WSN usually consists of a deployment of 
one or more static or mobile sink nodes and a number of 
sensor nodes on a physical environment [4, 5]. In such a 
network, each node is able to gather, process physical 
information and transmit the gathered data to a remote Base 
Station (BS) through a sink-node [6]. 
However, sensors are designed with resource constraints such 
as a restricted computing capacity; reduced memory size and 
storage; weak range of communication; low bandwidth and 
the limited amount of energy [7]. The energy resource is the 
most important parameter to be considered in the design of a 
WSN since it first defines the sensor’s lifetime and then the 
whole network lifetime [1, 8].  

Behind the energy constraint, the limited memory size and 
storage constraints overstrain sensors to execute light and not 
complex programs [9]. The OS embedded in the sensor 
realizes the management of these constraints. Two main types 
of OS exist in Wireless Sensor Networks (WSNs): Multitask 
(thread-based) and Event (event-based) systems [10]. The 
main problem of Multitask systems is the allocation of 
memory to different processes, but they permit the 
simultaneous execution of tasks with a non-negligible energy 
wastage. Nevertheless, event-based systems enable a better 
memory management, thus observe low power consumption, 
but do not allow long treatment and complex tasks [11]. 
In order to reduce the disadvantages of these systems, hybrid 
systems such as Contiki OS have been built [12]. The hybrid 
conception of Contiki allows to observe low energy 
consumption like event-based system due to its lightweight 
processes protothreads, which are designated for the 
multitask treatment. Contiki supplies to developers an 
optional multithreading library. However, it requires more 
memory resource and hence will consume a lot of energy.  
In this paper, in order to reduce the energy consumption 
during a multithreading treatment, a multithreading model for 
an efficient data delivery in WSNs called MMEDD is 
proposed. To achieve the proposal, the lightweight 
protothread included in Contiki is used. The performance 
analysis shows that the proposed architecture has 
approximately the same data delivery rate than the threaded 
model. Moreover, the proposal enables less energy 
consumption than the other models. In short, our main tasks 
can be summarized as follows: 

• Evaluation of the energy consumed during the data 
delivery, using the native multithreading library; 

• Comparison of the obtained results with those without 
multithreading; 

• Modelling an architecture for the multithreading by 
using protothreads instead of threads; 

• Simulation of the MMEDD in order to highlight its 
performance. 

The rest of this paper is organized as follows: Section 2 
presents sensors’ architectures and OS; Section 3 formulates 
the problem of using multithreading in WSN, and provides 
the performance analysis of data delivery and the energy 
consumption; in Section 4, the design goals and the 
description of the MMEDD are given; an experimental 
validation of our architecture is provided in Section 5; 
conclusion and directions for future work are presented in 
Section 6. 
 
 



180 
International Journal of Communication Networks and Information Security (IJCNIS)                                     Vol. 8, No. 3, December 2016 

 

2. Sensors' Architectures and OS 
 

In this section, we first discuss about WSNs’ architectures 
especially the different types of WSNs. Then, some existing 
OS dedicated to sensors are reviewed. 
 

2.1 WSNs' architectures 
 

A WSN can be defined as the combination of two main types 
of sensor nodes within the same network: the simple node 
and the gateway node [1, 7]. The simple nodes gather 
information from the sensing field and transfer the gathered 
data to the gateway nodes, which are linked to a remote BS 
via Internet or a LAN.  
Communication within the sensors’ field is done in a single 
or multi hop manner. Communication is done in multihop 
when two distant nodes communicate through an 
intermediate node while communication is done in a single-
hop when there is no intermediate node [3]. The architecture 
of WSN is directly linked to the configuration of the sensor 
field. Ari et al. [1] present two main architectures in WSNs: 
flat architectures and hierarchical architectures. 
In flat architecture, apart from the sink node, other nodes are 
homogeneous. Nodes communicate with the sink either in 
single or in multihop manner. Moreover, large-scale sensor 
networks usually use hierarchical architectures. In these 
architectures, the network is subdivided into several groups 
of sensors, usually sub-networks called clusters. A special 
node called Cluster Head (CH) represents each cluster. 
Interesting studies have been proposed for cluster formation 
and CH elections in WSNs [13, 14]. CH has to aggregate 
and/or compress the collected data and transfer the 
aggregated data to sink [15, 16], according to secured routing 
protocols such as the work proposed in [17]. 
 

2.2 Sensors' OS 
 

In a WSN, an OS is defined as a light layer of software that is 
located between the hardware and the application, which 
enables basic programming abstractions for developing 
applications [2]. The main aim of OS for WSNs is to allow 
applications to communicate with material resources, to 
schedule and prioritize tasks, and to ensure the regulation 
between conflict of applications and services. Operating 
systems’ functionalities include: power and memory 
management; file management; networking communication; 
and programming environments that allow building 
applications.  
Traditionally, OS are classified as single-task or as 
multitasking OS. Single-task OS executes one task at a 
specific time whereas multitasking OS can process many 
tasks simultaneously. The multitasking OS allows a sensor 
node to receive data from the sensing unit and to deliver data 
in parallel. However, a multitasking OS requires a large 
amount of memory, but sensor nodes are limited by its 
resources [2]. TinyOS [18] and Contiki [12] are the most 
used OS specifically designed for sensors [19]. TinyOS is an 
event-driven OS, its middleware supports time 
synchronization, routing, data aggregation, localization, radio 
communication, task scheduling, I/O processing, etc. The 
multitask is implemented in TinyOS in the TOSThread 
module. TinyOS is designed to run on equipment’s that have 
very low memory capacity [18]. Moreover, Contiki is a 
hybrid-driven OS combining event and thread functions. 
Contiki observes a small memory footprint as TinyOS due to 

the use of a lightweight process called protothread. The 
multitasking management is made possible through a 
multithreading module and its integration is optional because 
it uses more memory resources. 
Apart of TinyOS and Contiki systems, other OS for WSNs 
exist, based most of the time on a multi-threaded semantic 
model. However, these systems do not allow low energy 
consumption because they use locking mechanisms to 
achieve mutual exclusion of shared variables, while TinyOS 
and Contiki use an event-based scheduler without 
preemption.  In the literature the following systems can be 
found: Nano-Qplus [10], PAVENET OS [10], SOS [20], 
RETOS [21], LiteOS [22], Nano-RK [23], etc. Moreover, 
Liu et al. [24] have done a multithreaded comparison of the 
RAM usage between the systems TinyOS and Contiki. They 
show that multithreading in Contiki is lighter than the 
TOSThread of TinyOS. In the rest of the document we focus 
on Contiki OS because of its protothreads properties and the 
enabled multithreading performance. 
 

3. Multithreading in WSNs 
 

This section describes in detail the problem of using the 
multithreading in a WSN. An energy consumption analysis 
between a classical architecture and that using the 
multithreading module is also carried out. 
 

 3.1  Problem statement 
 

The problem of power and resource management is 
overriding for WSNs. In traditional multithreaded OS, the 
size of each stack is ingeniously reserved in order to avoid 
memory overflow and memory wastage. The main problem 
of multithreaded OS is that every created thread runs in a 
pre-reserved stack heuristically. Then if the reserved stack 
size is too small for a running application, it will generate a 
memory overflow. To solve this problem, the stack size 
needs to be assigned a large value that can meet the 
requirement of the worst case [24]. However, when the 
thread does not require a large stack size, the memory space 
reserved will not be efficiently used, leading to high energy 
wastage as shown on Figure 1. 
 

    3.2  Performance analysis 
 

This Section presents the experiments carried out on the 
Rime layer of Contiki OS by analysing the consequences of 
using threads for data delivery in WSN. 
 

 
Figure 1. Thread implementation 
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3.2.1 Adopted methodology 

 

In order to perform the analysis of the implemented thread 
module for data delivery in Contiki, we consider an example 
of a multihop communication by using the default library 
multihop.h of the Rime layer. To conduct the analysis, we 
consider a central node (inter) that will receive packets sent 
by some nodes (sender) and transfer these packets to another 
receiver-node (receiver). The idea is that a sender-node 
should not communicate directly with a receiver-node due to 
their limited communication range like highlighted in Figure 
2. Thus, the sender-node transmits a packet in multihop 
through inter-node. Simulation was realized with the 
simulator COOJA integrated to Contiki-2.7. Sky-mote nodes 
have been used and the coordinates given in Table 1 provide 
the random position. 
 

 
Figure 2. Experimental network 

 

Firstly, we have used the classical architecture in which the 
retransmission of packets by the inter-node sequentially 
follows the FIFO scheduling mechanism as shown on Figure 
3. Secondly, we have modified the library multihop.h so that, 
after receiving a packet to be transferred, the inter-node, 
creates a thread responsible for delivering packets to the 
receiver-node. The duty cycling implemented is defined by 
the ContikiMAC which is set as default by COOJA. The 
multi hop thread-based data transfer is presented in Figure 4. 

 
Figure 3. Multihop transfer using the Classical architecture 

 

For practical purposes, the average time between two cycles 
of the sender-node is fixed at 2ms. A cycle corresponds to the 
transmission of a sender. We have varied the number of 
senders between 1 and 15. The number of senders is set to 15 
in order to avoid sensors redundancy on the considered 
sensor field. We conducted more than 10 tests over 30 
cycles. The results were quite the same. Then, we analysed 
the number of received messages and the energy 
consumption of inter-node using the classical and the thread-
based architecture. 

 

Table 1. Nodes' Coordinates 
Node id  Axis (x-x’)  Axis (y-y’) 
1  95.099 55.277 
2  63.892  33.496 
3  63.413  50.411 
4  105.958  86.986 
5  68.541  80.854 
6  77.718  91.932 
7  76.697  62.781 
8  88.096  71.909 
9  70.237  54.939 
10  95.685  92.837 
11   95.403  81.934 
12   68.188  45.108 
13   101.094  81.764 
14   70.049  36.727 
15   73.013  50.47 
16   82.314  68.921 
17  123.692 32.81 
 

 
Figure 4. Thread implementation 

 

3.2.2  Reception message rate 
 

Results on Table 2 present the number of messages received 
by the inter-node over 30 cycles between classical and the 
thread-based architectures. From the data on Table 2, the 
reception rate for thread-based and classical architecture was 
computed. We obtained 72.33% for the thread-based 
architecture against 63.74% for the classical architecture. 
This shows that the data delivery using thread-based 
architecture achieves 8.59% messages more than classical 
architecture. These results are clearly plotted in Figure 5. 
This difference of performance is explained by the fact that 
the thread-based architecture receives and retransmits faster 
than the classical architecture. 
 

Table 2. Amount of received message on 30 cycles  – 
Classical Vs Thread-based 

Senders Msg-Send Classical Threads 
1  30 30 30 
2  60 42 56 
3  90 57 70 
4  120 90 94 
5  150 90 120 
6  180 134 151 
7  210 146 165 
8  240 177 179 
9  270 179 202 
10  300 172 205 
11   330 201 213 
12   360 198 218 
13   390 189 177 
14   420 169 237 
15   450 188 218 
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Figure 5. Comparison of the amount of received messages 

on 30 cycles – Classical Vs Thread-based 
 

3.2.3 Energy model 
 

We adopted the energy model obtained by Sehgal [25] 
(Equation 1), which allow estimating the energy consumption 
of the inter-node. 

 

 
 

Where: 
• rx, tx and ON respectively represent the time 

passing by the radio in the receive mode, transmit 
mode and the Cpu_ON; 

• γ = 4096 represents the number of ticks per second; 
• runtime is evaluated in seconds; 
• i = 20 mA is a pre-measured value available on the 

data sheet; 
• v = 3V is the approximated value of Sky-mote 

operational voltage. 
 

Table 3 shows the results in milliWatts (mW) of the energy 
consumption on the inter-node in the classical as well as in 
the thread-based architectures. The average energy 
consumption between these two architectures is slightly the 
same (7.3780 mW for classical architecture against 7.3074 
mW for the thread-based architecture). 
 

Table 3. Energy consumption on 30 cycles – Classical Vs 
Thread-based 

Senders  Classical  Threads 
1  2.5956  4.5877 
2  3.1021  3.4757 
3  3.0470  5.7267 
4  3.9621 4.70905 
5  4.5368  5.1678 
6  7.2492 6.4264 
7  9.3301  9.6382 
8  7.9583  10.2538 
9  6.1979  8.1779 
10  8.4618  9.1186 
11   10.3861  10.1320 
12   12.9091  9.3255 
13   12.8760  8.0336 
14   8.6349  5.5132 
15   9.4236  9.3250 
 

The overlap observed in Figure 6 does not show a greater 
difference between the classical and the thread-based 
architecture. We observe that on average, the classical 
architecture consume less energy than the thread-based 
architecture, when the number of senders is less than 10. 
However, when the number of senders increases (more than 
10), the classical model has higher energy consumption than 
the thread-based. This can be explained by the fact that, on 

classical architecture, the received messages have to be 
forwarded to receiver in FIFO order and then queued. The 
limited size of RAM on WSN influences the number of 
messages that can be stored on the queue. 

 
Figure 6. Comparison of the energy consumption on 30 

cycles – Classical Vs Thread-based 
 

The low energy consumption observed (less than 10 senders) 
on the classical architecture is explained by the fact that each 
process implemented in Contiki is a protothread that have a 
smaller memory footprint than thread, because protothreads 
created in the same context share the same memory space 
unlike threads like shown in Figure 7. 
 

 
Figure 7. Comparison of the energy consumption on 30 

cycles – Classical Vs Thread-based 
 

4. The proposed approach 
 

This section describes the proposed Multithreading Model 
for an Efficient Data Delivery (MMEDD). Design goals and 
the proposed multithreading model are presented hereinafter. 
 

  4.1  Design goals 
 

In order to have a multithreaded architecture with a low 
power consumption, we focused on the characteristics of 
protothreads (see Figure 6). The proposal aims at providing 
an efficient model that has noticeably the same performance 
than multithreaded, which consumes less energy. Instead 
using several small stacks for each thread, we need to 
implement a share memory during run-time like in the case of 
the protothreads in Contiki OS. 
 

  4.2  Multithreading model 
 

Our multithreading model operates as follows: when a node 
receives a packet for retransmission, it creates another 
process that will be responsible for retransmission. Knowing 
that in the Contiki system, a process is equivalent to a 
protothread, the first protothread PT_recv is responsible for 
listening on the communication channel. Upon reception of a 
request from a sender-node, if that message concerns a 
retransmission, the protothread PT_recv then creates a 
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second protothread PT_send in charge of delivering the 
message to the receiver-node. The proposed model is given 
in Figure 8. 
 

 
Figure 8. Multihop transfer using the MMEDD 

 

The flow chart given in Figure 9 shows in detail the different 
features of the inter-node in the MMEDD architecture. At 
first, the node starts the listening on a communication 
channel with the multihop_open() method, the packetbuffer 
structure informs when a new arrival packet is or not 
dedicated to transmission. If so, the call_back1() method is 
then executed and triggers the protothread PT_send using the 
process_start() method and making the data delivery with the 
unicast_send() method before stopping. The protothread 
PT_recv is started from the beginning of the application. 
 

 
Figure 9. Architecture 

 

For more details, the following paragraph describes the 
behavior of each component of the flowchart of Figure 9.  
At the beginning, when a node is started, the OS creates a 
protothread PT_recv which opens a connection via a channel 
such as the sockets on traditional network, by calling the with 
multihop_open() function. Opening a connection on Rime 
needs to define a callback function and a channel number 

(numbers on 16 bits, numbers less than 127 are kernel 
reserved). Only two nodes using the same channel can 
communicate each other. It is important to note that any node 
can be an inter-node. When an inter-node receives a packet 
through the packetbuffer structure, it checks the value of the 
field PACKETBUF_ADDR_ERECEIVER (address of the 
final receiver) and compares it with its own address. Let us 
remind that this is achieved by multihop_open(). Two cases 
are possible:  
- The final receiver is the inter-node: No need to forward 

the packet, the packet has reached its destination, the 
PT_send is not called and PT_recv continues listening for 
incoming message.  

- The final receiver and the inter-node are different: The 
ingoing packet has to be forwarded, the callback() function 
is therefore executed. This means that PT-recv has to make 
a forward. To achieve that, the packetbuffer is modified by 
changing the value of the field 
PACKETBUF_ADDR_SENDER (immediate sender 
address is changed to inter-node address) and the also the 
value of the field PACKETBUF_ADDR_RECEIVER 
(immediate receiver becomes the final receiver). 
Immediately after, the process_start() function is called. 
This function executes process_post_synch() which is in 
charge to create PT_send while assigning it a synchronous 
event. At that step, the PT_recv steel listening on the open 
channel, while the protothread PT_send sends the modified 
packetbuffer to the final receiver using the unicast_send()  
function. PT_send is immediately destroyed at the end of 
its task by the  process_end() function in order to reduce 
energy wastage of the inter-node. 

At the final step (END) PT_recv returns on listening for 
incoming messages. 

 

5. Simulation and Discussion 
 

In this section, we present the experimental results of the 
MMEDD architecture by considering the same conditions 
described in Section 3.2.1. Experiments were conducted in 
order to evaluate message reception rate and the energy 
consumption in classical, thread-based and MMEDD 
architectures. 
 

  5.1  Message reception rate 
 

Table 4 presents the amount of messages received by the 
inter-node in classical, thread-based and MMEDD 
architectures. 
 

Table 4. Amount of received message on 30 cycles  – 
Classical - Thread-based - MMEDD 

Senders Msg-Send Classical Threads MMEDD 
1  30 30 30 30 
2  60 42 56 50 
3  90 57 70 66 
4  120 90 94 94 
5  150 90 120 110 
6  180 134 151 157 
7  210 146 165 172 
8  240 177 179 192 
9  270 179 202 198 
10  300 172 205 220 
11   330 201 213 208 
12   360 198 218 203 
13   390 189 177 186 
14   420 169 237 187 
15   450 188 218 218 
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5.1.1 Classical vs MMEDD 

 

In this test, we compared the number of received messages 
both in the classical and MMEDD architectures. Data from 
Table IV show that the MMEDD architecture receives more 
messages than the classical architecture. This result is clearly 
plotted in Figure 10. Indeed, our proposal observes a 
reception rate of 70.95% against 63.74% for the classical 
architecture, i.e., a gain of 7.21%. The visible gain is allowed 
by the fact that, the MMEDD quickly deals more with 
different requests received by its multithreaded structure 
therefore faster transfer packets to the recipient. 
 

 
Figure 10. Comparison of number of received message on 

30 cycles – Classical Vs MMEDD 
 

5.1.2 Thread vs MMEDD 
 

In Table 4, when considering the number of received 
messages between the thread-based architecture and the 
MMEDD, we found that these two architectures have almost 
identical performances (72.33% for the thread-based and 
70.95% for the MMEDD). The intertwining between the two 
curves observed in Figure 11 shows that the thread-based and 
the MMEDD architectures have slightly the same reception 
rate (difference of 1.38%). This result is explained by the fact 
that these two architectures are based on multithreaded 
structures. 
 

 
Figure 11. Comparison of number of received message on 

30 cycles – Thread-based Vs MMEDD 
 

  5.2  Energy consumption 
 

The analysis of the energy consumption in the MMEDD 
architecture was made by considering the energy model given 
in Equation 1. The obtained values for the energy consumed 
are listed in Table 5. 
 

Table 5. Energy consumption on 30 cycles – Classical – 
Thread - MMEDD 

Senders  Classical  Threads MMEDD 
1  2.5956  4.5877 1.6882 
2  3.1021  3.4757 2.8172 
3  3.0470  5.7267 3.6935 
4  3.9621 4.70905 3.8473 
5  4.5368  5.1678 3.8130 
6  7.2492 6.4264 6.2966 
7  9.3301  9.6382 8.6741 
8  7.9583  10.2538 6.6649 
9  6.1979  8.1779 5.2931 
10  8.4618  9.1186 11.5380 
11   10.3861  10.1320 5.2282 
12   12.9091  9.3255 9.3529 
13   12.8760  8.0336 10.4199 
14   8.6349  5.5132 7.4984 
15   9.4236  9.3250 9.8375 
 

5.2.1 Classical vs MMEDD 
 

In Table 5 the values of energy consumption in mW between 
classical and MMEDD architectures are presented. It can be 
seen that, in most cases the MMEDD observes lower energy 
consumption, for an average energy consumption of 6.4441 
mW for MMEDD and 7.3780 mW for classical architecture. 
It can be observed that the MMEDD less consumes energy 
than the classical architecture. This can be explained by the 
fact that the two architectures implement protothreads that 
use less memory because sharing a same memory space, but 
MMEDD delivers messages more quickly. Figure 12 
provides the plots of these results. 
 

 
Figure 12. Comparison of energy consumption on 30 cycles 

– Classical Vs MMEDD 
 

5.2.2 Thread vs MMEDD 
 

Table 5 also presents the values of the energy consumption 
between the thread-based and the MMEDD architectures. We 
note that the MMEDD consumes in general less energy than 
the thread-based. The average energy consumption of the 
thread-based is 7.3074 mW and 6.4441 mW for the MMEDD 
architecture. Thus, the thread-based architecture consumes on 
average 0.8633 mW more than the MMEDD architecture. 
The different values of energy consumption are plotted on 
Figure 13. It can be observed that the energy consumption in 
the MMEDD architecture is generally less than the 
consumption enabled by the thread-based architecture. 
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Figure 13. Comparison of energy consumption on 30 cycles 

– Thread-based Vs MMEDD 
 

 5.3  Message reception rate / Energy consumption 
 

This subsection presents the efficiency of the different 
architectures namely classical, thread-based and MMEDD, 
by measuring the ratio between the message reception rate 
and the energy consumption. The formula given in Equation 
2 performs the reception rate over the energy consumption. 
 

 
 

Where:  
• TM/E represents the average of message reception rate 

over the energy consumption; 
• ri is the amount of received messages with i senders 
•  ei represents the energy consumption of inter-node 

with i senders 
• n is the number of senders (15)  

Table 6 gives the values for each number of senders, the ratio 
between reception message rate and the associated energy 
consumption (ri /ei). 
 

Table 6. Message reception rate over the energy 
consumption on 30 cycles – Classical – Thread - MMEDD 
Senders Classical Threads MMEDD 
1 11,5580 6,5392 17,7704 
2 13,5392 16,1118 17,7481 
3 18,7069 12,2234 17,8692 
4 22,7152 19,9615 24,4327 
5 19,8377 23,2207 28,8486 
6 18,4847 23,4968 24,9340 
7 15,6482 17,1193 19,8291 
8 22,2409 17,4569 28,8076 
9 28,8807 24,7007 37,4071 
10 20,3266 22,4815 19,0674 
11 19,3527 21,0225 39,7842 
12 15,3380 23,3767 21,7044 
13 14,6784 22,0324 17,8504 
14 19,5717 42,9877 24,9386 
15 19,9499 23,3780 22,1601 
 

Results from Table 6 show that MMEDD has a better ratio 
message reception rate/energy consumption than thread-
based and classical architectures. The average ratio message 
reception rate/energy consumption for classical, thread-
based and MMEDD architectures is represented by diagrams 
in Figure 14. It can be observed that MMEDD performed 
better than the others. 
 

 
Figure 14. Comparison of the message reception rate over 

energy consumption on 30 cycles – Classical - Thread based 
– MMEDD 

 

6. Conclusions and Future Works 
 

In this paper, we defined a new concept of multithreading for 
data delivery in WSNs. To achieve this, we used the 
multihops sending to simulate the multitasking in the Contiki 
operating system. First, experiments were conducted on 
classical and thread-based architectures. The results obtained 
during these experiments have shown that the thread-based 
architecture has better performance in data processing speed 
compared to the classical architecture (72.33% and 63.74% 
respectively). In the case of energy analysis, the thread-based 
architecture is greedier than the classical architecture. 
However, when the multitasking is important, the energy 
consumption of the thread-based architecture joins the one 
obtained in the classical architecture. According to these 
results, we modelled the MMEDD architecture that is a 
thread-based architecture. 
Furthermore, instead of threads that use more memory, we 
integrate protothreads. To achieve this, two protothreads 
were designed. The first is responsible for reception and the 
second is responsible for transmission of packets to the 
destination. The large experiments conducted show that the 
proposed MMEDD architecture has a better power message 
delivering than the classical (7.21% more) and substantially 
equal to the thread-based architecture. The used protothreads 
that are lightweight processes implemented in Contiki 
favoured a lower consumption than classical and thread-
based architectures. Finally, the results show that MMEDD 
provides better ratio message reception rate/energy 
consumption than classical and thread-based architectures.  
Future works will investigate the use of other criteria such as 
the duty cycling, the loss of local variables by protothreads 
after crash. 
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