23 research outputs found

    Anisometric Charge Dependent Swelling of Porous Carbon in an Ionic Liquid

    Get PDF
    In situ electrochemical dilatometry was used to study, for the first time, the expansion behavior of a porous carbon electrode in a pure ionic liquid, 1-ethyl-3-methyl-imidazolium-tetrafluoroborate. For a single electrode, an applied potential of -2 V and +2 V against the potential of zero charge resulted in maximum strain of 1.8 % and 0.5 %, respectively. During cyclic voltammetry, the characteristic expansion behavior strongly depends on the scan rate, with increased scan rates leading to a decrease of the expansion. Chronoamperometry was used to determine the equilibrium specific capacitance and expansion. The obtained strain versus accumulated charge relationship can be fitted with a simple quadratic function. Cathodic and anodic expansion data collapses on one parabola when normalizing the surface charge by the ratio of ion volume and average pore size. There is also a transient spike in the height change when polarity is switched from positive to negative that is not observed when changing the potential from negative to positive indicating the size and the shape of the ion is influencing the expansion behavior.Comment: 10 pages double spaced, 3 figs, Electrochemistry Communications, accepte

    Modified Back Projection Kernel Based Image Super Resolution

    Get PDF
    In this paper, we propose a new super resolution technique based on iterative interpolation followed by registering them using back projection (BP). Firstly the low resolution image is interpolated and then decimated to four low resolution images. The four low resolution images are interpolated and registered by using BP in order to generate a sharper high resolution image then high resolution image is down sampled and back to the first step. The proposed method has been tested on some bench mark images. The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) results as well as the visual results shows the superiority of the proposed technique over the conventional and state-of-art image super resolution techniques. In Average, the PSNR is 2.72 dB higher than the bicubic interpolation

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Finite element simulations of 3D ionic transportation properties in Li-ion electrolytes

    No full text
    In current work, the ionic transport limitations in the Li-ion battery liquid electrolyte with separator are studied by a finite element method. This theoretical approach is based on the Nernst–Planck equation. It is shown that instead of solving coupled PDE system for concentration and potential, it is sufficient to calculate only the concentration profile in a three-dimensional (3D) structure to obtain a full description of the diffusion–migration ionic transport in the electrolyte in the steady-state. Subsequently, the overpotential and electric field can be calculated by using the provided equations. It was found that diffusion and migration overpotentials are equal in the steady-state. Consequently, two algorithms exploiting electrolyte simulations are proposed and successfully used to calculate the limiting current for the simulated battery system. In the present study a single perforated layer of the separator is inserted into the electrolyte and the simulations are carried out by increasing the complexity of the membrane holes. The ionic transportation dependence on the pore shape was found to be local and limited by the spatial area around the perforated separator

    Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes

    No full text
    Electrically conductive polymer (CP) based ionic electromechanically active polymer composites (IEAP-s) are attractive as bending and linear actuators in compliant and miniature devices due to low operating voltage. Ink-jet printing is a promising technology for fabrication of microscale CP-based IEAP-s with customized shapes and geometries. The current study investigates tailoring of the mechanical and electromechanical properties of the actuators by controlled growth of ink-jet printed poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) based electrodes on commercial poly(vinylidene fluoride) (PVdF) membranes. In parallel with PEDOT:PSS, hybrid actuators with ink-jet printed PEDOT:PSS and activated carbon aerogel electrodes were investigated. Cumulative growth of electrodes with each deposited layer was achieved in the case of both electrode materials. The strain, blocking force and capacitance of the actuators were in linear correlation with the thickness of the electrodes. Simple method of control encourages implementation of ink-jet-printing technology for manufacturing of IEAP micro-actuators with desired mechanical and electromechanical properties
    corecore