1,441 research outputs found
Physical mapping of a powdery mildew resistance related gene Hv-S/TPK by FISH with a TAC clone in wheat
Dissertação de mestrado integrado em Medicina (Hematologia), apresentado á Faculdade de Medicina da Universidade de Coimbra.A Policitemia Vera (PV) é uma doença clonal de etiologia desconhecida, na maior parte dos casos, que envolve a célula estaminal progenitora hematopoiética multipotencial. É uma neoplasia mieloproliferativa crónica (NMP) que se caracteriza pela expansão das três linhas celulares hematopoiéticas: eritróide, granulocÃtica e megacariocÃtica, com predomÃnio da primeira, de modo independente dos mecanismos normais de regulação da eritropoiese. Além disso, as células têm aspecto morfológico normal, a fibrose medular é pouco significativa e os nÃveis de eritropoietina (Epo) são habitualmente normais a baixos. Além da hipercelularidade medular com sobreprodução de uma ou de todas as linhas celulares, a doença cursa com hematopoiese extramedular, hiperviscosidade, propensão para complicações como trombose ou hemorragia e risco de desenvolvimento de mielofibrose ou transformação em leucemia aguda.
A descrição relativamente recente da associação de uma mutação no gene JAK2, localizado no cromosoma 9p24, com as doenças mieloproliferativas clássicas negativas para BCR-ABL, como a PV, veio permitir avanços significativos na compreensão da patofisiologia deste grupo de doenças hematológicas. A mutação provoca uma alteração do aminoácido V (valina) para F (fenilalanina) na posição 617 (JAK2V617F). De acordo com os dados publicados, a frequência da detecção da mutação JAK2V617F em doentes com PV é de cerca de 95%.
A proteÃna JAK2 é uma tirosina cinase citoplasmática, que se encontra associada ao domÃnio intracelular dos receptores de citocinas (como a Epo e trombopoietina - Tpo), e de factores de crescimento, essenciais para a função destes receptores. A mutação da JAK2 conduz à activação constitutiva dos receptores, independente da ligação à respectiva citocina e/ou hipersensibilidade a factores de crescimento, com consequente activação de múltiplas vias de sinalização intracelulares como a JAK/STAT (Janus Kinase/Signal Transductor and activator of transcription), a PI3K (fosfatidilinositol 3 cinase) e a MAPK (proteÃna cinase activadora de mitose), envolvidas na transformação e proliferação dos progenitores hematopoiéticos. Por outro lado, as células evidenciam alteração na diferenciação terminal e resistência à apoptose in vitro que poderá estar relacionada com o aumento da expressão da proteÃna anti-apoptótica Bcl-XL.
Além dos avanços no diagnóstico, a detecção da mutação JAK2V617F tem contribuido para melhorar a classificação e a terapêutica dos doentes com PV. Deste modo, o conhecimento dos mecanismos moleculares envolvidos na PV tem levado os investigadores à descoberta de novos fármacos dirigidos ao defeito molecular, permitindo novas abordagem terapêuticas mais eficazes e provavelmente de menor toxicidade.
Este trabalho procura fazer uma revisão sobre o actual conhecimento da caracterização molecular e clÃnica da PV e quais as suas implicações no diagnóstico e abordagem terapêutica desta NMP.Polycythemia Vera (PV) is a clonal disease of unknown etiology, which often involves the pluripotential hematopoietic stem cell. This disease integrates the family of chronic myeloproliferative neoplasm (MPN) and is characterized by the growth of the three hematopoietic celular lineages: granulocytic, megakaryocytic and erythroid, with predominance of the last one and regardless the normal mechanisms of erythropoiesis regulation. Moreover, cells have normal morphological aspect, bone marrow shows slight fibrosis and the levels of erythropoietin (Epo) usually vary from normal to low. Besides marrow hypercellularity with overproduction of one or all the celular lineages, the disease courses with extramedullary hematopoiesis, hyperviscosity, leading to complications such as thrombosis or bleeding and risk of transformation to myelofibrosis or acute leukemia.
Recently it has been described the association between the mutation in the JAK2 gene, located on chromosome 9p24, with the classic myeloproliferative disorders BCR-ABL negative, such as PV, which has brought significant advances in the understanding of the pathophysiology of this group of hematologic malignancies. The mutation causes a change of amino acid V (valine) to F (phenylalanine) at position 617 (JAK2V617F). According to published data, the frequency of JAK2V617F mutation detected in patients with PV is about 95%.
JAK2 protein is a cytoplasmic tyrosine kinase, which is associated to the intracelular domain of cytokine receptors, such as Epo and thrombopoietin (Tpo), and growth factors which are essential to the function of these receptors. JAK2 mutation leads to the constitutive receptors activation, independent of connection to their cytokine and / or hypersensitivity to growth factors, with consequent activation of multiple intracellular signaling pathways such as JAK / STAT (Janus Kinase / Signal transducer and transcription activator), the PI3K (phosphatidylinositol 3 kinase) and MAPK (Mitogen-activated protein), involved in the transformation and proliferation of hematopoietic progenitors. Moreover, the cells show changes in terminal differentiation and resistance to in vitro apoptosis which is possibly related to the increasing expression of anti-apoptotic protein Bcl-XL.
In addition to the advances in diagnosis, detection of JAK2V617F mutation has contributed to the improvement of classification and treatment in patients with PV. Thus, knowledge of the molecular mechanisms involved in PV has led investigators to the discovery of new drugs targeting molecular defects, allowing new therapeutic approach more efficient and probably less toxic.
The aim of this article is to review the current knowledge of clinical and molecular characterization of PV, and its implications on the diagnosis and therapeutic approach of this myeloproliferative disorder
How and why DNA barcodes underestimate the diversity of microbial eukaryotes
Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous ''cryptic species'' will become discernable with the future acquisition of genomic and metagenomic sequences
A global perspective on marine photosynthetic picoeukaryote community structure
A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change
The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation
PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
W18O49 Nanowires as Ultraviolet Photodetector
Photodetectors in a configuration of field effect transistor were fabricated based on individual W18O49 nanowires. Evaluation of electrical transport behavior indicates that the W18O49 nanowires are n-type semiconductors. The photodetectors show high sensitivity, stability and reversibility to ultraviolet (UV) light. A high photoconductive gain of 104 was obtained, and the photoconductivity is up to 60 nS upon exposure to 312 nm UV light with an intensity of 1.6 mW/cm2. Absorption of oxygen on the surface of W18O49 nanowires has a significant influence on the dark conductivity, and the ambient gas can remarkably change the conductivity of W18O49 nanowire. The results imply that W18O49 nanowires will be promising candidates for fabricating UV photodetectors
- …