1,882 research outputs found

    Fibronectin-Containing Extracellular Vesicles Protect Melanocytes against Ultraviolet Radiation-Induced Cytotoxicity.

    Get PDF
    Skin melanocytes are activated by exposure to UV radiation to secrete melanin-containing melanosomes to protect the skin from UV-induced damage. Despite the continuous renewal of the epidermis, the turnover rate of melanocytes is very slow, and they survive for long periods. However, the mechanisms underlying the survival of melanocytes exposed to UV radiation are not known. Here, we investigated the role of melanocyte-derived extracellular vesicles in melanocyte survival. Network analysis of the melanocyte extracellular vesicle proteome identified the extracellular matrix component fibronectin at a central node, and the release of fibronectin-containing extracellular vesicles was increased after exposure of melanocytes to UVB radiation. Using an anti-fibronectin neutralizing antibody and specific inhibitors of extracellular vesicle secretion, we demonstrated that extracellular vesicles enriched in fibronectin were involved in melanocyte survival after UVB radiation. Furthermore, we observed that in the hyperpigmented lesions of patients with melasma, the extracellular space around melanocytes contained more fibronectin compared with normal skin, suggesting that fibronectin is involved in maintaining melanocytes in pathological conditions. Collectively, our findings suggest that melanocytes secrete fibronectin-containing extracellular vesicles to increase their survival after UVB radiation. These data provide important insight into how constantly stimulated melanocytes can be maintained in pathological conditions such as melasma.1166Ysciescopu

    Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    Get PDF
    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.112820Ysciescopu

    Gravitino Dark Matter in Tree Level Gauge Mediation with and without R-parity

    Full text link
    We investigate the cosmological aspects of Tree Level Gauge Mediation, a recently proposed mechanism in which the breaking of supersymmetry is communicated to the soft scalar masses by extra gauge interactions at the tree level. Embedding the mechanism in a Grand Unified Theory and requiring the observability of sfermion masses at the Large Hadron Collider, it follows that the Lightest Supersymmetric Particle is a gravitino with a mass of the order of 10 GeV. The analysis in the presence of R-parity shows that a typical Tree Level Gauge Mediation spectrum leads to an overabundance of the Dark Matter relic density and a tension with the constraints from Big Bang Nucleosynthesis. This suggests to relax the exact conservation of the R-parity. The underlying SO(10) Grand Unified Theory together with the bounds from proton decay provide a rationale for considering only bilinear R-parity violating operators. We finally analyze the cosmological implications of this setup by identifying the phenomenologically viable regions of the parameter space.Comment: 28 pages, 5 figures. References added. To appear in JHE

    Ammonia-Nitrogen Recovery from Synthetic Solution using Agricultural Waste Fibers

    Get PDF
    In this study, modification of Empty Fruit Bunch (EFB) fibers as a means to recover ammonianitrogen from a synthetic solution was investigated. Methods: The EFB fiber was modified using sodium hydroxide.Adsorption-desorption studies of ammonia nitrogen into the modified EFB fiber were investigated Findings: Theincrease in adsorption capacity was found to be proportional with the increase of pH up to 7, temperature and ammoniaconcentration. The maximum adsorption capacity is 0.53-10.89 mg/g. The attachment of ammonia nitrogen involves ionexchange-chemisorption. The maximum desorption capacity of 0.0999 mg/g. Applications: This study can be used as abaseline for designing a low cost adsorbent system for ammonia nitrogen recovery drainage and industrial wastewater aswell as EFBs-palm oil mill effluent composting

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.

    Get PDF
    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer

    Size-Tailored Physicochemical Properties of Monodisperse Polystyrene Nanoparticles and the Nanocomposites Made Thereof

    Get PDF
    The latex monodisperse polystyrene (PS) colloids are important for different advanced applications (e.g. in coating, biotechnology etc.). However, the size dependency of their structural properties that impacts the characteristics of the nanocomposites composed thereof is largely unknown. Here, monodisperse PS nanoparticles (MPNPs) are synthesized via emulsion polymerization in five sizes (50, 150, 300, 350, and 450 nm). The size of the PS MPNPs is tailored by controlling the reaction time, temperature, and amount of surfactant and initiator. The correlation between the particle size and structural properties of the PS MPNPs is established by different thermomechanical and optical characterizations. The smaller particles (50 and 150 nm) show a lower glass transition (Tg) and thermal decomposition temperature and a lower Raman peak intensity. Yet, they trigger a higher IR absorption, thanks to a larger surface area. When incorporated in a polyvinyl alcohol (PVA) matrix, the smaller particles impart the resulting nanocomposite a higher tensile strength, and elastic and storage moduli. Whereas, they decline the elongation and loss factor. The very few examples of the MPNPs incorporated polymeric nanocomposites have been unstudied from this perspective. Thus, these tangible knowledge can profit scalable production of this kind of nanocomposite materials for different applications in a cost/energy efficient manner.Peer reviewe

    TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging

    Get PDF
    Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of beta 3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with beta 3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia

    Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells

    Get PDF
    Capsaicin has known pharmacological effects including the ability to reversibly open cellular tight junctions, among others. The aim of this study was to develop a strategy to enhance the paracellular transport of a substance with low permeability (FITC-dextran) across an epithelial cell monolayer via reversible opening of cellular tight junctions using a nanosystem comprised by capsaicin and of chitosan. We compared the biophysical properties of free capsaicin and capsaicin-loaded chitosan nanocapsules, including their cytotoxicity towards epithelial MDCK-C7 cells and their effect on the integrity of tight junctions, membrane permeability and cellular uptake. The cytotoxic response of MDCK-C7 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, is not observable following its encapsulation. The interaction between nanocapsules and the tight junctions of MDCK-C7 cells was investigated by impedance spectroscopy, digital holographic microscopy and structured illumination fluorescence microscopy. The nanocapsules modulated the interaction between capsaicin and tight junctions as shown by the different time profile of trans-epithelial electrical resistance and the enhanced permeability of monolayers incubated with FITC-dextran. Structured illumination fluorescence microscopy showed that the nanocapsules were internalized by MDCK-C7 cells. The capsaicin-loaded nanocapsules could be further developed as drug nanocarriers with enhanced epithelial permeability
    corecore