80 research outputs found

    Solving geoinformatics parametric polynomial systems using the improved Dixon resultant

    Get PDF
    Improvements in computational and observational technologies in geoinformatics, e.g., the use of laser scanners that produce huge point cloud data sets, or the proliferation of global navigation satellite systems (GNSS) and unmanned aircraft vehicles (UAVs), have brought with them the challenges of handling and processing this “big data”. These call for improvement or development of better processing algorithms. One way to do that is integration of symbolically presolved sub-algorithms to speed up computations. Using examples of interest from real geoinformatic problems, we will discuss the Dixon-EDF resultant as an improved resultant method for the symbolic solution of parametric polynomial systems. We will briefly describe the method itself, then discuss geoinformatics problems arising in minimum distance mapping (MDM), parameter transformations, and pose estimation essential for resection. Dixon-EDF is then compared to older notions of “Dixon resultant”, and to several respected implementations of Gröbner bases algorithms on several systems. The improved algorithm, Dixon-EDF, is found to be greatly superior, usually by orders of magnitude, in both CPU usage and RAM usage. It can solve geoinformatics problems on which the other methods fail, making symbolic solution of parametric systems feasible for many problems

    The influence of low frequency sea surface temperature modes on delineated decadal rainfall zones in Eastern Africa region

    Get PDF
    Influence of low frequency global Sea Surface Temperatures (SSTs) modes on decadal rainfall modes over Eastern Africa region is investigated. Fore-knowledge of rainfall distribution at decadal time scale in specific zones is critical for planning purposes. Both rainfall and SST data that covers a period of 1950–2008 were subjected to a ‘low-pass filter’ in order to suppress the high frequency oscillations. VARIMAX-Rotated Principal Component Analysis (RPCA) was employed to delineate the region into decadal rainfall zones while Singular Value Decomposition (SVD) techniques was used to examine potential linkages of these zones to various areas of the tropical global oceans. Ten-year distinct decadal signals, significant at 95% confidence level, are dominant when observed in-situ rainfall time series are subjected to spectral analysis. The presence of variability at El Niño Southern Oscillation (ENSO)-related timescales, combined with influences in the 10–12 year and 16–20 year bands were also prevalent. Nine and seven homogeneous decadal rainfall zones for long rainfall season i.e. March-May (MAM) and the short rainfall season i.e. October-December (OND), respectively, are delineated. The third season of June–August (JJA), which is mainly experienced in western and Coastal sub-regions had eight homogenous zones delineated. The forcing of decadal rainfall in the region is linked to the equatorial central Pacific Ocean, the tropical and South Atlantic Oceans, and the Southwest Indian Ocean. The high variability of these modes highlighted the significant roles of all the global oceans in forcing decadal rainfall variability over the region

    Motor Vehicles: Are they emerging threats to Lake Victoria and its environment?

    Get PDF
    Lake Victoria and its basin supports more than 30 million people, while its fishes are exported the world over. This second largest fresh water body is however experiencing stress due to eutrophication, sedimentation, declining levels and more recently the motor vehicle sector. This contribution examines the general pollution from motor vehicle and gives an in-depth analysis of motor vehicle washing along the lakeshore. The results indicate the water samples from the motor vehicle washing and urban runoff points to be slightly acidic (i.e., average pH of 6.7) and average Total at these points. The conductivity for the motor vehicle washing points averaged at 150 S/cm, while the urban runoffs point was more varied ranging from below 150 S/cm to over 400 S/cm (average 301 S/cm). A positive correlation coefficient of more than 0.7 is obtained between the total daily count of vehicles and each of the water quality parameter tested. This signifies a strong correlation between motor vehicle related activities and the pollution of the lake. In general, the motor vehicle industry is found to have a noticeable negativeeffect on the lake

    Potential impacts of climate and environmental change on the stored water of Lake Victoria Basin and economic implications

    Get PDF
    The changing climatic patterns and increasing human population within the Lake Victoria Basin (LVB), together with overexploitation of water for economic activities call for assessment of water management for the entire basin. This study focused on the analysis of a combination of available in situ climate data, Gravity Recovery and Climate Experiment (GRACE), Tropical Rainfall Measuring Mission (TRMM) observations, and high resolution Regional Climate simulations during recent decade(s) to assess the water storage changes within LVB that may be linked to recent climatic variability/changes and anomalies. We employed trend analysis, principal component analysis (PCA), and temporal/spatial correlations to explore the associations and covariability among LVB stored water, rainfall variability, and large-scale forcings associated with El-Niño/Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). Potential economic impacts of human and climate-induced changes in LVB stored water are also explored.Overall, observed in situ rainfall from lake-shore stations showed a modest increasing trend during the recent decades. The dominant patterns of rainfall data from the TRMM satellite estimates suggest that the spatial and temporal distribution of precipitation have not changed much during the period of 1998–2012 over the basin consistent with in situ observations. However, GRACE-derived water storage changes over LVB indicate an average decline of 38.2 mm/yr for 2003–2006, likely due to the extension of the Owen Fall/Nalubale dam, and an increase of 4.5 mm/yr over 2007–2013, likely due to two massive rainfalls in 2006–2007 and 2010–2011. The temporal correlations between rainfall and ENSO/IOD indices during the study period, based on TRMM and model simulations, suggest significant influence of large-scale forcing on LVB rainfall, and thus stored water. The contributions of ENSO and IOD on the amplitude of TRMM-rainfall and GRACE-derived water storage changes, for the period of 2003–2013, are estimated to be ~2.5 cm and ~1.5 cm, respectively

    The use of NDVI and its Derivatives for Monitoring Lake Victoria’s Water Level and Drought Conditions

    Get PDF
    Normalized Difference Vegetation Index (NDVI), which is a measure of vegetation vigour, and lake water levels respond variably to precipitation and its deficiency. For a given lake catchment, NDVI may have the ability to depict localized natural variability in water levels in response to weather patterns. This information may be used to decipher natural from unnatural variations of a given lake’s surface. This study evaluates the potential of using NDVI and its associated derivatives (VCI (vegetation condition index), SVI (standardised vegetation index), AINDVI (annually integrated NDVI), green vegetation function (F g ), and NDVIA (NDVI anomaly)) to depict Lake Victoria’s water levels. Thirty years of monthly mean water levels and a portion of the Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR (Advanced Very High Resolution Radiometer) NDVI datasets were used. Their aggregate data structures and temporal co-variabilities were analysed using GIS/spatial analysis tools. Locally, NDVI was found to be more sensitive to drought (i.e., responded more strongly to reduced precipitation) than to water levels. It showed a good ability to depict water levels one-month in advance, especially in moderate to low precipitation years. SVI and SWL (standardized water levels) used in association with AINDVI and AMWLA (annual mean water levels anomaly) readily identified high precipitation years, which are also when NDVI has a low ability to depict water levels. NDVI also appears to be able to highlight unnatural variations in water levels. We propose an iterative approach for the better use of NDVI, which may be useful in developing an early warning mechanisms for the management of lake Victoria and other Lakes with similar characteristics

    GNSS remote sensing of the Australian tropopause

    Get PDF
    Radio occultation (RO) techniques that use signals transmitted by Global Navigation Satellite Systems (GNSS) have emerged over the past decade as an important tool for measuring global changes in tropopause temperature and height, a valuable capacity given the tropopause’s sensitivity to temperature variations. This study uses 45,091 RO data from the CHAMP (CHAllenging Minisatellite Payload, 80 months), GRACE (Gravity Recovery And Climate Experiment, 23 months) and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, 20 months) satellites to analyse the variability of the tropopause’s height and temperature over Australia. GNSS RO temperature profiles from CHAMP, GRACE, and COSMIC are first validated using radiosonde observations provided by the Bureau of Meteorology (Australia). These are compared to RO soundings from between 2001 and 2007 that occurred within 3 h and 100 km of a radiosonde.The results indicate that RO soundings provide data of a comparable quality to radiosonde observations in the tropopause region, with temperature deviations of less than 0.5 ± 1.5 K. An analysis of tropopause height and temperature anomalies indicates a height increase over Australia as a whole of ca. 4.8 ± 1.3 m between September 2001 and April 2008, with a corresponding temperature decrease of −0.019 ± 0.007 K. A similar pattern of increasing height/decreasing temperature was generally observed when determining the spatial distribution of the tropopause height and temperature rate of change over Australia. Although only a short period has been considered in this study, a function of the operating time of these satellites, the results nonetheless show an increase in the height of the tropopause over Australia during this period and thus may indicate regional warming. Several mechanisms could be responsible for these changes, such as an increase in the concentration of greenhouse gases in the atmosphere, and lower stratospheric cooling due to ozone loss, both of which have been observed during the last decades

    Pareto optimality solution of the multi-objective photogrammetric resection-intersection problem

    Get PDF
    Reconstruction of architectural structures from photographs has recently experienced intensive efforts in computer vision research. This is achieved through the solution of nonlinear least squares (NLS) problems to obtain accurate structure and motion estimates. In Photogrammetry, NLS contribute to the determination of the 3-dimensional (3D) terrain models from the images taken from photographs. The traditional NLS approach for solving the resection-intersection problem based on implicit formulation on the one hand suffers from the lack of provision by which the involved variables can be weighted. On the other hand, incorporation of explicit formulation expresses the objectives to be minimized in different forms, thus resulting in different parametric values for the estimated parameters at non-zero residuals. Sometimes, these objectives may conflict in a Pareto sense, namely, a small change in the parameters results in the increase of one objective and a decrease of the other, as is often the case in multi-objective problems. Such is often the case with error-in-all-variable (EIV) models, e.g., in the resection-intersection problem where such change in the parameters could be caused by errors in both image and reference coordinates.This study proposes the Pareto optimal approach as a possible improvement to the solution of the resection-intersection problem, where it provides simultaneous estimation of the coordinates and orientation parameters of the cameras in a two or multistation camera system on the basis of a properly weighted multi-objective function. This objective represents the weighted sum of the square of the direct explicit differences of the measured and computed ground as well as the image coordinates. The effectiveness of the proposed method is demonstrated by two camera calibration problems, where the internal and external orientation parameters are estimated on the basis of the collinearity equations, employing the data of a Manhattan-type test field as well as the data of an outdoor, real case experiment. In addition, an architectural structural reconstruction of the Merton college court in Oxford (UK) via estimation of camera matrices is also presented. Although these two problems are different, where the first case considers the error reduction of the image and spatial coordinates, while the second case considers the precision of the space coordinates, the Pareto optimality can handle both problems in a general and flexible way

    Enhancing civil engineering surveying learning through workshops

    Get PDF
    Abstract: Surveying in an undergraduate civil engineering curriculum needs a substantial amount of hands-on training to obtain adequate learning outcomes. A lecture-only mode of delivery does not provide the adequate surveying skills needed by an engineering student. In 2009, workshops were introduced for the CVEN2000 Civil Engineering Drawing and Surveying unit at Curtin University, Australia, with the aim of offering students hands-on training in surveying to enhance their learning. This study analyzes data collected from 160 students in 2012 and 2013 using confidence limits, correlations, frequency percentage distribution, and principal component analysis to evaluate if the introduced workshops contributed to the enhancement of (1) the students acquiring industry-based skills and (2) the students’ overall learning of engineering surveying, which is a practical-oriented course. Additionally, qualitative analysis fromCurtin’s official eVALUate and examination results were used to verify the findings of the previously mentioned contributions. The results indicate that workshops contributed to the development of the students’ overall learning skills, with the top agreement of the students being critical thinking skills (93.6%), handling problems (96.6%), and correlating theory (97.9%). Qualitative analysis of the 2013 data indicates that 70% of the students agreed that their overall learning skills were enhanced and that the workshop sessions prior to the assessed fieldwork of setting out the horizontal curves enhanced their communication and teamwork skills. Overall, 97.9% of the students were satisfied with the workshops, and 98.9% of the students said that they would recommend them as an effective learning tool to their friends. The main lesson learned from the data presented in this paper is that students were satisfied with the workshops and recognized/perceived them to contribute to the development of the learning attributes they need to acquire

    Temporal shoreline series analysis using GNSS

    Get PDF
    In recent decades, Boa Viagem beach located in the city of Recife-PE and Piedade in JaboatĂŁo dos Guararapes-PE (Brazil) has seen urbanization near the coastline causing changes in social, economic and morphological aspects, where coastal erosion problems are observed. This study uses GNSS (global navigation satellite system) shoreline monitoring approach, which is quicker, and provides continuously updatable data at cm-level accuracy to analyze and determine temporal positional shifts of the shoreline as well as annual average rates through EPR (end point rate). To achieve this, kinematic GNSS survey data for the years 2007, 2009, 2010 and 2012 were used. The results show sectorial trends over the years, with the highest annual retreat rate of 8.16 m /year occurring during the period 2007-2009. Variety of different patterns over the shoreline were also observed. These findings could be essential for decision making in coastal environments

    Study on cycle-slip detection and repair methods for a single dual-frequency global positioning system (GPS) receiver

    Get PDF
    In this work, we assessed the performance of the cycle-slip detection methods: Turbo Edit (TE), Melbourne-WĂŒbbena wide-lane ambiguity (MWWL) and forward and backward moving window averaging (FBMWA). The TE and MWWL methods were combined with ionospheric total electron content rate (TECR), and the FBMWA with second-order time-difference phase ionosphere residual (STPIR) and TECR. Under different scenarios, 10 Global Positioning System (GPS) datasets were used to assess the performance of the methods for cycle-slip detection. The MWWL-TECR delivered the best performance in detecting cycle-slips for 1 s data. The relative comparisons show that the FBMWA-TECR method performed slightly better than its original version, FBMWA-STPIR, detecting 100% and 73%, respectively. For data with a sample rate of 5 s, the FBMWA-TECR performed better than MWWL-TECR. However, the FBMWA is suitable only for post-processing, which refers to applications where the data are processed after the fact
    • 

    corecore