25 research outputs found

    Statistical analysis of orientation, shape, and size of solar wind switchbacks

    Get PDF
    One of the main discoveries from the first two orbits of Parker Solar Probe (PSP) was the presence of magnetic switchbacks, whose deflections dominated the magnetic field measurements. Determining their shape and size could provide evidence of their origin, which is still unclear. Previous work with a single solar wind stream has indicated that these are long, thin structures although the direction of their major axis could not be determined. We investigate if this long, thin nature extends to other solar wind streams, while determining the direction along which the switchbacks within a stream were aligned. We try to understand how the size and orientation of the switchbacks, along with the flow velocity and spacecraft trajectory, combine to produce the observed structure durations for past and future orbits. We searched for the alignment direction that produced a combination of a spacecraft cutting direction and switchback duration that was most consistent with long, thin structures. The expected form of a long, thin structure was fitted to the results of the best alignment direction, which determined the width and aspect ratio of the switchbacks for that stream. The switchbacks had a mean width of 50,000 km50,000 \, \rm{km}, with an aspect ratio of the order of 1010. We find that switchbacks are not aligned along the background flow direction, but instead aligned along the local Parker spiral, perhaps suggesting that they propagate along the magnetic field. Since the observed switchback duration depends on how the spacecraft cuts through the structure, the duration alone cannot be used to determine the size or influence of an individual event. For future PSP orbits, a larger spacecraft transverse component combined with more radially aligned switchbacks will lead to long duration switchbacks becoming less common

    Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro

    Get PDF
    During sexual transmission of human immunodeficiency virus (HIV), macrophages are initial targets for HIV infection. Secretory leukocyte protease inhibitor (SLPI) has been shown to protect against HIV infection of macrophages through interactions with annexin A2 (A2), which is found on the macrophage cell surface as a heterotetramer (A2t) consisting of A2 and S100A10. Therefore, we investigated potential protein-protein interactions between A2 and HIV-1 gp120 through a series of co-immunoprecipitation assays and a single molecule pulldown (SiMPull) technique. Additionally, inhibitors of A2t (A2ti) that target the interaction between A2 and S100A10 were tested for their ability to impair productive HIV-1 infection of macrophages. Our data suggest that interactions between HIV-1 gp120 and A2 exist, though this interaction may be indirect. Furthermore, an anti-A2 antibody impaired HIV-1 particle production in macrophages in vitro, whereas A2ti did not indicating that annexin A2 may promote HIV-1 infection of macrophages in its monomeric rather than tetrameric form

    Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature

    Get PDF
    This Letter addresses the first Solar Orbiter (SO)–Parker Solar Probe (PSP) quadrature, occurring on 2021 January 18 to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in the corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic field and the bulk kinetic energy flux density can be empirically inferred along the coronal current sheet with an unprecedented accuracy, allowing in particular estimation of the Alfvén radius at 8.7 solar radii during the time of this event. This is thus the very first study of the same solar wind plasma as it expands from the sub-Alfvénic solar corona to just above the Alfvén surface

    Green grafting: A useful technique for detecting grapevine viruses

    No full text

    Proton core behaviour inside magnetic field switchbacks

    No full text
    During Parker Solar Probe’s first two orbits there are widespread observations of rapid magnetic field reversals known as switchbacks. These switchbacks are extensively found in the near-Sun solar wind, appear to occur in patches, and have possible links to various phenomena such as magnetic reconnection near the solar surface. As switchbacks are associated with faster plasma flows, we questioned whether they are hotter than the background plasma and whether the microphysics inside a switchback is different to its surroundings. We have studied the reduced distribution functions from the Solar Probe Cup instrument and considered time periods with markedly large angular deflections, to compare parallel temperatures inside and outside switchbacks. We have shown that the reduced distribution functions inside switchbacks are consistent with a rigid velocity space rotation of the background plasma. As such, we conclude that the proton core parallel temperature is very similar inside and outside of switchbacks, implying that a T-V relationship does not hold for the proton core parallel temperature inside magnetic field switchbacks. We further conclude that switchbacks are consistent with Alfvénic pulses travelling along open magnetic field lines. The origin of these pulses, however, remains unknown. We also found that there is no obvious link between radial Poynting flux and kinetic energy enhancements suggesting that the radial Poynting flux is not important for the dynamics of switchbacks

    Electron energization and energy dissipation in microscale electromagnetic environments

    No full text
    Particle energization and energy dissipation in electromagnetic environments are longstanding topics of intensive research in space, laboratory, and astrophysical plasmas. One challenge is to understand these conversion processes at smaller and smaller spatial/temporal scales. In this Letter, with very high cadence measurements of particle distributions from the Magnetospheric Multiscale spacecraft, we report evidence of evolution of an identified microscale (i.e., electron gyro-scale) magnetic cavity structure and reveal within it a unique energization process that does not adhere to prevailing adiabatic invariance theory. Our finding indicates that this process is largely energy dependent, and can accelerate/decelerate charged particles inside the trapping region during their gyromotion, clearly altering the particle distribution

    Proteomic characterization of murid herpesvirus 4 extracellular virions.

    Get PDF
    Gammaherpesvirinae, such as the human Epstein-Barr virus (EBV) and the Kaposi's sarcoma associated herpesvirus (KSHV) are highly prevalent pathogens that have been associated with several neoplastic diseases. As EBV and KSHV are host-range specific and replicate poorly in vitro, animal counterparts such as Murid herpesvirus-4 (MuHV-4) have been widely used as models. In this study, we used MuHV-4 in order to improve the knowledge about proteins that compose gammaherpesviruses virions. To this end, MuHV-4 extracellular virions were isolated and structural proteins were identified using liquid chromatography tandem mass spectrometry-based proteomic approaches. These analyses allowed the identification of 31 structural proteins encoded by the MuHV-4 genome which were classified as capsid (8), envelope (9), tegument (13) and unclassified (1) structural proteins. In addition, we estimated the relative abundance of the identified proteins in MuHV-4 virions by using exponentially modified protein abundance index analyses. In parallel, several host proteins were found in purified MuHV-4 virions including Annexin A2. Although Annexin A2 has previously been detected in different virions from various families, its role in the virion remains controversial. Interestingly, despite its relatively high abundance in virions, Annexin A2 was not essential for the growth of MuHV-4 in vitro. Altogether, these results extend previous work aimed at determining the composition of gammaherpesvirus virions and provide novel insights for understanding MuHV-4 biology
    corecore