35 research outputs found

    Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility

    Get PDF
    Leptictida are basal Paleocene to Oligocene eutherians from Europe and North America comprising species with highly specialized postcranial features including elongated hind limbs. Among them, the European Leptictidium was probably a bipedal runner or jumper. Because the semicircular canals of the inner ear are involved in detecting angular acceleration of the head, their morphometry can be used as a proxy to elucidate the agility in fossil mammals. Here we provide the first insight into inner ear anatomy and morphometry of Leptictida based on high-resolution computed tomography of a new specimen of Leptictidium auderiense from the middle Eocene Messel Pit (Germany) and specimens of the North American Leptictis and Palaeictops. The general morphology of the bony labyrinth reveals several plesiomorphic mammalian features, such as a secondary crus commune. Leptictidium is derived from the leptictidan groundplan in lacking the secondary bony lamina and having proportionally larger semicircular canals than the leptictids under study. Our estimations reveal that Leptictidium was a very agile animal with agility score values (4.6 and 5.5, respectively) comparable to Macroscelidea and extant bipedal saltatory placentals. Leptictis and Palaeictops have lower agility scores (3.4 to 4.1), which correspond to the more generalized types of locomotion (e.g., terrestrial, cursorial) of most extant mammals. In contrast, the angular velocity magnitude predicted from semicircular canal angles supports a conflicting pattern of agility among leptictidans, but the significance of these differences might be challenged when more is known about intraspecific variation and the pattern of semicircular canal angles in non-primate mammals

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Biosynthesis and PBAN-regulated transport of pheromone polyenes in the winter moth, Operophtera brumata.

    No full text
    The trienoic and tetraenoic polyenes, (3Z,6Z,9Z)-3,6,9-nonadecatriene, (3Z,6Z,9Z)-3,6,9-henicosatriene, and (3Z,6Z,9Z)-1,3,6,9-henicosatetraene were found in the abdominal cuticle and pheromone gland of the winter moth Operophtera brumata L. (Lepidoptera: Geometridae), in addition to the previously identified single component sex pheromone (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene. The pheromone biosynthesis activating neuropeptide (PBAN) is involved in the regulation of polyene transport from abdominal cuticle to the pheromone gland. In vivo deuterium labeling experiments showed that (11Z,14Z,17Z)-11,14,17-icosatrienoic acid, the malonate elongation product of linolenic acid, (9Z,12Z,15Z)-9,12,15-octadecatrienoic acid, is used to produce (3Z,6Z,9Z)-3,6,9-nonadecatriene and (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene

    Setting research priorities for effective management of a threatened ecosystem: Australian alpine and subalpine peatland

    No full text
    Threatened ecosystem conservation requires an understanding of the effectiveness of management and the challenges hindering successful protection and recovery. Bringing together researchers, land managers and policymakers to identify key threats, management needs, and knowledge gaps provides a unified account of the evidence and tools needed to improve threatened ecosystem management. We undertook a research prioritization process for Australian alpine and subalpine peatlands with experts across policy, research, and management. Through individual interviews, structured group discussions, and voting, we generated 25 priority research questions that, if addressed, would enhance our capacity to conserve peatlands. Knowledge gaps spanned four topics: understanding peatland dynamics, impacts of threats, methods to manage these, and the effectiveness of management. Consistent monitoring standards, an open-access knowledge platform and commitment to long-term joint research and management were identified as vital. This collaboration enabled development of a shared agenda of research priorities to target knowledge gaps for informing policy and management of threatened alpine peatlands. Our findings substantiate the importance of stronger ongoing collaboration among researchers, land managers and policymakers across jurisdictions to support conservation
    corecore