521 research outputs found

    Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)

    Get PDF
    Bovine TB is a major problem for the agricultural industry in several countries. TB can be contracted and spread by species other than cattle and this can cause a problem for disease control. In the UK and Ireland, badgers are a recognised reservoir of infection and there has been substantial discussion about potential control strategies. We present a coupling of individual based models of bovine TB in badgers and cattle, which aims to capture the key details of the natural history of the disease and of both species at approximately county scale. The model is spatially explicit it follows a very large number of cattle and badgers on a different grid size for each species and includes also winter housing. We show that the model can replicate the reported dynamics of both cattle and badger populations as well as the increasing prevalence of the disease in cattle. Parameter space used as input in simulations was swept out using Latin hypercube sampling and sensitivity analysis to model outputs was conducted using mixed effect models. By exploring a large and computationally intensive parameter space we show that of the available control strategies it is the frequency of TB testing and whether or not winter housing is practised that have the most significant effects on the number of infected cattle, with the effect of winter housing becoming stronger as farm size increases. Whether badgers were culled or not explained about 5%, while the accuracy of the test employed to detect infected cattle explained less than 3% of the variance in the number of infected cattle

    Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Get PDF
    BACKGROUND: Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. METHODS: Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by) Kaplan-Meier survival curves. RESULTS: Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p < 0.01) with the high affinity ligand ephrin A1. A similar trend was observed between EphA2 and ephrin A1 (r = 0.387; p = 0.06). A striking correlation of both ephrin A1 and ephrin A5 expression with poor survival (r = -0.470; p = 0.02 and r = -0.562; p < 0.01) was observed. Intriguingly, there was no correlation between survival and other clinical parameters or Eph expression. CONCLUSION: These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis

    Inflammatory Monocytes and Neutrophils Are Licensed to Kill during Memory Responses In Vivo

    Get PDF
    Immunological memory is a hallmark of B and T lymphocytes that have undergone a previous encounter with a given antigen. It is assumed that memory cells mediate better protection of the host upon re-infection because of improved effector functions such as antibody production, cytotoxic activity and cytokine secretion. In contrast to cells of the adaptive immune system, innate immune cells are believed to exhibit a comparable functional effector response each time the same pathogen is encountered. Here, using mice infected by the intracellular bacterium Listeria monocytogenes, we show that during a recall bacterial infection, the chemokine CCL3 secreted by memory CD8+ T cells drives drastic modifications of the functional properties of several populations of phagocytes. We found that inflammatory ly6C+ monocytes and neutrophils largely mediated memory CD8+ T cell bacteriocidal activity by producing increased levels of reactive oxygen species (ROS), augmenting the pH of their phagosomes and inducing antimicrobial autophagy. These events allowed an extremely rapid control of bacterial growth in vivo and accounted for protective immunity. Therefore, our results provide evidence that cytotoxic memory CD8+ T cells can license distinct antimicrobial effector mechanisms of innate cells to efficiently clear pathogens

    The effect of chemotherapy on health-related quality of life in mesothelioma: Results from the SWAMP trial

    Get PDF
    © 2015 Cancer Research UK. All rights reserved. Background: The effect of chemotherapy on health-related quality of life (HRQoL) in malignant pleural mesothelioma (MPM) is poorly understood. Patient-individualised prognostication and prediction of treatment response from chemotherapy is useful but little evidence exists to guide practice. Method: Consecutive patients with MPM who were fit for first-line chemotherapy with pemetrexed and cisplatin\carboplatin were recruited and followed up for a minimum of 12 months. This study focussed on the HRQoL outcomes of these patients using the EQ-5D, EORTC QLQ-C30 and LC13. Results: Seventy-three patients were recruited of which 58 received chemotherapy and 15 opted for best supportive care (BSC). Compliance with HRQoL questionnaires was 98% at baseline. The chemotherapy group maintained HRQoL compared with the BSC group whose overall HRQoL fell (P=0.006) with worsening dyspnoea and pain. The impact of chemotherapy was irrespective of histological subtype although those with non-epithelioid disease had worse HRQoL at later time points (P=0.012). Additionally, those with a falling mesothelin or improvement on modified-RECIST CT at early follow-up had a better HRQoL at 16 weeks. Conclusions: HRQoL was maintained following chemotherapy compared with a self-selected BSC group. Once chemotherapy is initiated, a falling mesothelin or improved RECIST CT findings infer a quality-of-life advantage

    NF-kappaB Mediated Transcriptional Repression of Acid Modifying Hormone Gastrin

    Get PDF
    Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFk

    Addressing challenges in the production and analysis of illumina sequencing data

    Get PDF
    Advances in DNA sequencing technologies have made it possible to generate large amounts of sequence data very rapidly and at substantially lower cost than capillary sequencing. These new technologies have specific characteristics and limitations that require either consideration during project design, or which must be addressed during data analysis. Specialist skills, both at the laboratory and the computational stages of project design and analysis, are crucial to the generation of high quality data from these new platforms. The Illumina sequencers (including the Genome Analyzers I/II/IIe/IIx and the new HiScan and HiSeq) represent a widely used platform providing parallel readout of several hundred million immobilized sequences using fluorescent-dye reversible-terminator chemistry. Sequencing library quality, sample handling, instrument settings and sequencing chemistry have a strong impact on sequencing run quality. The presence of adapter chimeras and adapter sequences at the end of short-insert molecules, as well as increased error rates and short read lengths complicate many computational analyses. We discuss here some of the factors that influence the frequency and severity of these problems and provide solutions for circumventing these. Further, we present a set of general principles for good analysis practice that enable problems with sequencing runs to be identified and dealt with

    A Few Bad Apples:A Model of Disease Influenced Agent Behaviour in a Heterogeneous Contact Environment

    Get PDF
    For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent’s disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence

    Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK

    Get PDF
    葡萄糖是生物中最基本、最主要的营养物质,它不仅是机体能量的主要来源,也是生物质合成的主要原料。因此,葡萄糖的水平对于生物体是极其重要的。然而,在生活中,体内葡萄糖水平的波动是十分常见的,这是因为我们不可能每时每刻都在摄入葡萄糖:睡一大觉、剧烈运动几个小时或者太忙了没时间吃饭,都会引起葡萄糖水平的显著下降。这时,机体能够触发一套有效的过程应对这类“不利情况”,其中最为关键的就是激活“代谢的核心调节”——AMPK。在葡萄糖水平下降时,被激活的AMPK能够迅速启动脂肪、蛋白质的分解代谢,关闭它们的合成代谢,从而起到维持机体的能量和物质代谢的平衡,弥补机体因葡萄糖不足引起的胁迫压力。那么,机体如何感受葡萄糖水平下降,并“传递”给AMPK使其激活呢?林圣彩教授课题组的这项研究正是发现了生理状态下机体感受葡萄糖水平的机制。通过研究他们发现,无论在不含葡萄糖的细胞培养条件下,还是在饥饿的低血糖的动物体内,都不能观测到AMP水平的上升,这充分说明了机体有一套尚不为人知的、独立于AMP的感应葡萄糖水平的机制。在进一步的研究中他们揭示了这一完整过程:葡萄糖水平下降将引起的葡萄糖代谢中间物——果糖1,6-二磷酸(fructose-1,6-bisphosphate)水平的下降,该过程进一步地被糖酵解通路上的代谢酶——醛缩酶(aldolase)感应,因为醛缩酶正是将含有6个碳原子的果糖1,6-二磷酸裂解成三碳糖的酶,一旦醛缩酶“吃不到”由葡萄糖衍生的果糖1,6-二磷酸,它便“翻脸”,传递给也正是林圣彩教授课题组先前发现的溶酶体途径进而激活AMPK。该过程完全不涉及AMP水平,即能量水平的变化,是一条全新的、完全建立在实际的生理情况上的通路。林圣彩教授进一步地把葡萄糖水平总结为一种“状态信号”,以区别于传统的“能量信号”。据悉,该葡萄糖感知通路的发现对开发用于治疗肥胖症,乃至延长寿命的药物具有深远的意义。【Abstract】The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK)1, but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK2, 3, 4, 5. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation6, 7. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.D.G.H. was supported by an Investigator Award from the Wellcome Trust (097726) and a Programme Grant from Cancer Research UK (C37030/A15101). S.-C.L. was supported by grants from the National Key Research and Development Project of China (2016YFA0502001) and the National Natural Science Foundation of China (#31430094, #31690101, #31571214, #31601152 and #J1310027)
    corecore