397 research outputs found

    How authentic leadership influences team performance:the mediating role of team reflexivity

    Get PDF
    This study examines how authentic leadership influences team performance via the mediating mechanism of team reflexivity. Adopting a self-regulatory perspective, we propose that authentic leadership will predict the specific team regulatory process of reflexivity, which in turn will be associated with two outcomes of team performance; effectiveness and productivity. Using survey data from 53 teams in three organizations in the United Kingdom and Greece and controlling for collective trust, we found support for our stated hypotheses with the results indicating a significant fully mediated relationship. As predicted the self-regulatory behaviors inherent in the process of authentic leadership served to collectively shape team behavior, manifesting in the process of team reflexivity, which, in turn, positively predicted team performance. We conclude with a discussion of how this study extends theoretical understanding of authentic leadership in relation to teamwork and delineate several practical implications for leaders and organizations

    Relative contributions of adipose-resident CD146 pericytes and CD34 adventitial progenitor cells in bone tissue engineering

    Get PDF
    Bone repair: synergistic healing from two types of fat cells Different kinds of cells found surrounding blood vessels in fat play a complementary and synergistic role in bone healing. Aaron James from Johns Hopkins University in Baltimore, MD, USA, and colleagues derived two subsets of cells from human fat tissue: contractile cells known as pericytes that wrap around cellular lining of capillaries and tiny veins; and connective tissue cells known as adventitial cells that surrounds larger vessels. Under isolated culture conditions, pericytes stimulated the development of primitive blood vessels, whereas adventitial cells promoted early bone formation. The researchers applied the cells to the sites of bone defects in mice and saw that combined treatment with both pericytes and adventitial cells led to greater bone repair than treatment with either cell type alone

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Intention-to-treat survival benefit of liver transplantation in patients with hepatocellular cancer

    Get PDF
    The debate about the best approach to select patients with hepatocellular cancer (HCC) waiting for liver transplantation (LT) is still ongoing. This study aims to identify the best variables allowing to discriminate "high-" and "low-benefit" patients. To do so, the innovative concept of intention-to-treat (ITT) survival benefit of LT has been created. Data of 2103 adult HCC patients consecutively enlisted during the period 1987-2015 were analyzed. Three rigorous statistical steps were used in order to create the ITT survival benefit of LT: the development of an ITT LT and a non-LT survival model, and the individual prediction of the ITT survival benefit of LT defined as the difference between the median ITT survival with (based on the first model) and without LT (based on the second model) calculated for each enrolled patient. Four variables (MELD, alpha-fetoprotein, Milan-Criteria status and radiological response) displayed a high effect in terms of delta-benefit. According to these risk factors, four benefit groups were identified. Patients with three-four factors ("no-benefit group", n=405/2103; 19·2%) had no benefit of LT compared to alternative treatments. Inversely, patients without any risk factor ("large-benefit group", n=108; 5·1%) yielded the highest benefit from LT reaching 60 months. CONCLUSION: The here presented innovative ITT transplant survival benefit allows to better select HCC patients waiting for LT. The obtained stratification may lead to an improved and more equal way for organ allocation. Patients with no benefit should be de-listed, whilst patients with large benefit ratio should be prioritized for LT. This article is protected by copyright. All rights reserved

    Persistent left superior vena cava: Review of the literature, clinical implications, and relevance of alterations in thoracic central venous anatomy as pertaining to the general principles of central venous access device placement and venography in cancer patients

    Get PDF
    Persistent left superior vena cava (PLSVC) represents the most common congenital venous anomaly of the thoracic systemic venous return, occurring in 0.3% to 0.5% of individuals in the general population, and in up to 12% of individuals with other documented congential heart abnormalities. In this regard, there is very little in the literature that specifically addresses the potential importance of the incidental finding of PLSVC to surgeons, interventional radiologists, and other physicians actively involved in central venous access device placement in cancer patients. In the current review, we have attempted to comprehensively evaluate the available literature regarding PLSVC. Additionally, we have discussed the clinical implications and relevance of such congenital aberrancies, as well as of treatment-induced or disease-induced alterations in the anatomy of the thoracic central venous system, as they pertain to the general principles of successful placement of central venous access devices in cancer patients. Specifically regarding PLSVC, it is critical to recognize its presence during attempted central venous access device placement and to fully characterize the pattern of cardiac venous return (i.e., to the right atrium or to the left atrium) in any patient suspected of PLSVC prior to initiation of use of their central venous access device
    • 

    corecore