1,518 research outputs found

    Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody

    Get PDF
    Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and effective ZIKV vaccine is urgently needed. However, vaccine design is complicated by concern that elicited antibodies (Abs) may cross-react with other flaviviruses that share a similar envelope protein, such as dengue virus, West Nile virus, and yellow fever virus. This cross-reactivity may worsen symptoms of a subsequent infection through Ab-dependent enhancement. To better understand the neutralizing Ab response and risk of Ab-dependent enhancement, further information on germline Ab binding to ZIKV and the maturation process that gives rise to potently neutralizing Abs is needed. Here we use binding and structural studies to compare mature and inferred-germline Ab binding to envelope protein domain III of ZIKV and other flaviviruses. We show that affinity maturation of the light-chain variable domain is important for strong binding of the recurrent VH3-23/VK1-5 neutralizing Abs to ZIKV envelope protein domain III, and identify interacting residues that contribute to weak, cross-reactive binding to West Nile virus. These findings provide insight into the affinity maturation process and potential cross-reactivity of VH3-23/VK1-5 neutralizing Abs, informing precautions for protein-based vaccines designed to elicit germline versions of neutralizing Abs

    PROPEL: implementation of an evidence based pelvic floor muscle training intervention for women with pelvic organ prolapse: a realist evaluation and outcomes study protocol

    Get PDF
    Abstract Background Pelvic Organ Prolapse (POP) is estimated to affect 41%–50% of women aged over 40. Findings from the multi-centre randomised controlled “Pelvic Organ Prolapse PhysiotherapY” (POPPY) trial showed that individualised pelvic floor muscle training (PFMT) was effective in reducing symptoms of prolapse, improved quality of life and showed clear potential to be cost-effective. However, provision of PFMT for prolapse continues to vary across the UK, with limited numbers of women’s health physiotherapists specialising in its delivery. Implementation of this robust evidence from the POPPY trial will require attention to different models of delivery (e.g. staff skill mix) to fit with differing care environments. Methods A Realist Evaluation (RE) of implementation and outcomes of PFMT delivery in contrasting NHS settings will be conducted using multiple case study sites. Involving substantial local stakeholder engagement will permit a detailed exploration of how local sites make decisions on how to deliver PFMT and how these lead to service change. The RE will track how implementation is working; identify what influences outcomes; and, guided by the RE-AIM framework, will collect robust outcomes data. This will require mixed methods data collection and analysis. Qualitative data will be collected at four time-points across each site to understand local contexts and decisions regarding options for intervention delivery and to monitor implementation, uptake, adherence and outcomes. Patient outcome data will be collected at baseline, six months and one year follow-up for 120 women. Primary outcome will be the Pelvic Organ Prolapse Symptom Score (POP-SS). An economic evaluation will assess the costs and benefits associated with different delivery models taking account of further health care resource use by the women. Cost data will be combined with the primary outcome in a cost effectiveness analysis, and the EQ-5D-5L data in a cost utility analysis for each of the different models of delivery. Discussion Study of the implementation of varying models of service delivery of PFMT across contrasting sites combined with outcomes data and a cost effectiveness analysis will provide insight into the implementation and value of different models of PFMT service delivery and the cost benefits to the NHS in the longer term

    Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

    Get PDF
    Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds

    Identification of features of electronic prescribing systems to support quality and safety in primary care using a modified Delphi process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines.</p> <p>Methods</p> <p>Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia.</p> <p>Results</p> <p>A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases.</p> <p>Conclusions</p> <p>This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.</p

    Burmese pythons in Florida: A synthesis of biology, impacts, and management tools

    Get PDF
    Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control. (119 pp
    corecore