50 research outputs found
Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates
In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and how the high energy scale physics associated with Mott-like excitations (|E-EF|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Y-Bi2212 over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (Tc)
Haploinsufficiency of the E3 Ubiquitin Ligase C-Terminus of Heat Shock Cognate 70 Interacting Protein (CHIP) Produces Specific Behavioral Impairments
The multifunctional E3 ubiquitin ligase CHIP is an essential interacting partner of HSP70, which together promote the proteasomal degradation of client proteins. Acute CHIP overexpression provides neuroprotection against neurotoxic mitochondrial stress, glucocorticoids, and accumulation of toxic amyloid fragments, as well as genetic mutations in other E3 ligases, which have been shown to result in familial Parkinson's disease. These studies have created a great deal of interest in understanding CHIP activity, expression and modulation. While CHIP knockout mice have the potential to provide essential insights into the molecular control of cell fate and survival, the animals have been difficult to characterize in vivo due to severe phenotypic and behavioral dysfunction, which have thus far been poorly characterized. Therefore, in the present study we conducted a battery of neurobehavioral and physiological assays of adult CHIP heterozygotic (HET) mutant mice to provide a better understanding of the functional consequence of CHIP deficiency. We found that CHIP HET mice had normal body and brain weight, body temperature, muscle tone and breathing patterns, but do have a significant elevation in baseline heart rate. Meanwhile basic behavioral screens of sensory, motor, emotional and cognitive functions were normative. We observed no alterations in performance in the elevated plus maze, light-dark preference and tail suspension assays, or two simple cognitive tasks: novel object recognition and spontaneous alternation in a Y maze. Significant deficits were found, however, when CHIP HET mice performed wire hang, inverted screen, wire maneuver, and open field tasks. Taken together, our data indicate a clear subset of behaviors that are altered at baseline in CHIP deficient animals, which will further guide whole animal studies of the effects of CHIP dysregulation on cardiac function, brain circuitry and function, and responsiveness to environmental and cellular stress
Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis
Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment
A Neuron-Glial Perspective for Computational Neuroscience
International audienceThere is growing excitement around glial cells, as compelling evidence point to new, previously unimaginable roles for these cells in information processing of the brain, with the potential to affect behavior and higher cognitive functions. Among their many possible functions, glial cells could be involved in practically every aspect of the brain physiology in health and disease. As a result, many investigators in the field welcome the notion of a Neuron-Glial paradigm of brain function, as opposed to Ramon y Cayal's more classical neuronal doctrine which identifies neurons as the prominent, if not the only, cells capable of a signaling role in the brain. The demonstration of a brain-wide Neuron-Glial paradigm however remains elusive and so does the notion of what neuron-glial interactions could be functionally relevant for the brain computational tasks. In this perspective, we present a selection of arguments inspired by available experimental and modeling studies with the aim to provide a biophysical and conceptual platform to computational neuroscience no longer as a mere prerogative of neuronal signaling but rather as the outcome of a complex interaction between neurons and glial cells
SynTarget: an online tool to test the synergetic effect of genes on survival outcome in cancer
International audienceThe identification of target combinationswith synergistic effects on cancer is at the leading edge of modern cancer research, especially for the development of combined anticancer therapies. However, at present, the basis for selection of beneficial targetcombinations commonly relies on expert opinion without any systematic rationale. The development of high-throughput technologies has led to the availability of large-scale clinical gene expression data sets.2–4Mining of these data sets for identification of gene combinations with synergetic effects on survival outcome in cancer could provide a systematic rationale for the identification of target combinations with potential therapeutic synergy. ..