154 research outputs found

    Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly

    Get PDF
    Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either \alpha_s or q_T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q_T=0, including the normalization and first-order \alpha_s(q_*) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure

    Kinematics of Multigrid Monte Carlo

    Full text link
    We study the kinematics of multigrid Monte Carlo algorithms by means of acceptance rates for nonlocal Metropolis update proposals. An approximation formula for acceptance rates is derived. We present a comparison of different coarse-to-fine interpolation schemes in free field theory, where the formula is exact. The predictions of the approximation formula for several interacting models are well confirmed by Monte Carlo simulations. The following rule is found: For a critical model with fundamental Hamiltonian H(phi), absence of critical slowing down can only be expected if the expansion of in terms of the shift psi contains no relevant (mass) term. We also introduce a multigrid update procedure for nonabelian lattice gauge theory and study the acceptance rates for gauge group SU(2) in four dimensions.Comment: 28 pages, 8 ps-figures, DESY 92-09

    Ising Spins on Thin Graphs

    Get PDF
    The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic couplings the replica trick gives some evidence for a spin glass phase. In this paper we investigate both the ferromagnetic and antiferromagnetic models with the aid of simulations. We confirm the Bethe lattice values of the critical points for the ferromagnetic model on ϕ3\phi^3 and ϕ4\phi^4 graphs and examine the putative spin glass phase in the antiferromagnetic model by looking at the overlap between replicas in a quenched ensemble of graphs. We also compare the Ising results with those for higher state Potts models and Ising models on ``fat'' graphs, such as those used in 2D gravity simulations.Comment: LaTeX 13 pages + 9 postscript figures, COLO-HEP-340, LPTHE-Orsay-94-6

    Sun exposure to the eyes: predicted UV protection effectiveness of various sunglasses.

    Get PDF
    The aim of this study was to assess solar ultraviolet radiation (UVR) doses received by the eyes in different exposure situations, and to predict the sun protection effectiveness provided by various styles of sunglasses at facial, periorbital, and ocular skin zones including the cornea and accounting for different head positions. A 3D numeric model was optimized to predict direct, diffuse and reflected erythemally weighted UVR doses received at various skin zones. Precisely defined facial, periorbital, and ocular skin zones, sunglasses (goggles, medium-, and large-sized sunglasses) and three head positions were modeled to simulate daily (08:00-17:00) and midday (12:00-14:00) UVR doses. The shading from sunglasses' frame and lenses' UVR transmission were used to calculate a predictive protection factor (PPF [%]). Highest ocular daily UVR doses were estimated at the uncovered cornea (1718.4 J/m <sup>2</sup> ). Least sun protection was provided by middle-sized sunglasses with highest midday dose at the white lateral (290.8 J/m <sup>2</sup> ) and lateral periorbital zones (390.9 J/m <sup>2</sup> ). Goggles reached almost 100% protection at all skin zones. Large-sized sunglasses were highly effective in winter; however, their effectiveness depended on diffuse UVR doses received. In "looking-up" head positions highest midday UVR doses were received at the unprotected cornea (908.1 J/m <sup>2</sup> ), totally protected when large-sized sunglasses are used. All tested sunglass lenses fully blocked UVR. Sunglasses' protection effectiveness is strongly influenced by geometry, wearing position, head positions, and exposure conditions. Sunglasses do not totally block UVR and should be combined with additional protection means. 3D modeling allows estimating UVR exposure of highly sensitive small skin zones, chronically exposed and rarely assessed

    Parton Fragmentation within an Identified Jet at NNLL

    Full text link
    The fragmentation of a light parton i to a jet containing a light energetic hadron h, where the momentum fraction of this hadron as well as the invariant mass of the jet is measured, is described by "fragmenting jet functions". We calculate the one-loop matching coefficients J_{ij} that relate the fragmenting jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h for quark and gluon jets. We perform this calculation using various IR regulators and show explicitly how the IR divergences cancel in the matching. We derive the relationship between the coefficients J_{ij} and the quark and gluon jet functions. This provides a cross-check of our results. As an application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance where we measure the momentum fraction of the pi+ and restrict to the dijet limit by imposing a cut on thrust T. In our analysis we sum the logarithms of tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy (NNLL). We find that including contributions up to NNLL (or NLO) can have a large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio

    Headache in juvenile myoclonic epilepsy

    Get PDF
    The objective of this study was to assess the prevalence of and risk factors for primary headaches in juvenile myoclonic epilepsy (JME). Headache was classified in 75 patients with JME using a questionnaire, and its prevalence was correlated with the literature on the general population and clinical data. Headache was present in 47 patients. Thirty-one had migraine [20 migraine without aura (MO), 11 migraine with aura (MA)]. Fourteen patients with migraine had tension-type headache (TTH) in addition. Sixteen had only TTH. Comparison with the general population revealed a significantly higher prevalence of migraine (RR 4.4), MO (3.6), MA (7.3) and TTH (3.4) in JME. Risk factors for migraine and MO were female gender and for MA family history of migraine in first-degree relatives. Migraine and MA were associated with fairly controlled generalized tonic clonic seizures, MO with absences. Together with its strong genetic background, JME appears to be an attractive homogenous subtype of epilepsy for genetic research on migraine

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Factorization Theorem For Drell-Yan At Low q_T And Transverse-Momentum Distributions On-The-Light-Cone

    Full text link
    We derive a factorization theorem for Drell-Yan process at low q_T using effective field theory methods. In this theorem all the obtained quantities are gauge invariant and the special role of the soft function--and its subtraction thereof--is emphasized. We define transverse-momentum dependent parton distribution functions (TMDPDFs) which are free from light-cone singularities while all the Wilson lines are defined on-the-light-cone. We show explicitly to first order in \alpha_s that the partonic Feynman PDF can be obtained from the newly defined partonic TMDPDF by integrating over the transverse momentum of the parton inside the hadron. We obtain a resummed expression for the TMDPDF, and hence for the cross section, in impact parameter space. The universality of the newly defined matrix elements is established perturbatively to first order in \alpha_s. The factorization theorem is validated to first order in \alpha_s and also the gauge invariance between Feynman and light-cone gauges.Comment: Minor changes. Version published in JHE

    Wolff-Type Embedding Algorithms for General Nonlinear σ\sigma-Models

    Full text link
    We study a class of Monte Carlo algorithms for the nonlinear σ\sigma-model, based on a Wolff-type embedding of Ising spins into the target manifold MM. We argue heuristically that, at least for an asymptotically free model, such an algorithm can have dynamic critical exponent z2z \ll 2 only if the embedding is based on an (involutive) isometry of MM whose fixed-point manifold has codimension 1. Such an isometry exists only if the manifold is a discrete quotient of a product of spheres. Numerical simulations of the idealized codimension-2 algorithm for the two-dimensional O(4)O(4)-symmetric σ\sigma-model yield zint,M2=1.5±0.5z_{int,{\cal M}^2} = 1.5 \pm 0.5 (subjective 68\% confidence interval), in agreement with our heuristic argument.Comment: 70 pages, 7 postscript figure

    Reproducibility of the mfERG between instruments

    Get PDF
    Purpose First, to examine both the reproducibility of the multifocal electroretinogram (mfERG) recorded on different versions of the same instrument, and the repeatability of the mfERG recorded on a single instrument using two different amplifiers. Second, to demonstrate a means by which multicenter and longitudinal studies that use more than one recording instrument can compare and combine data effectively. Methods Three different amplifiers and two mfERG setups, one using VERIS™ 4.3 software (mfERG1) and another using VERIS™ Pro 5.2 software (mfERG2), were evaluated. A total of 73 subjects with normal vision were tested in three groups. Group 1 (n = 42) was recorded using two amplifiers in parallel on mfERG1. Group 2 (n = 52) was recorded on mfERG2 using a single amplifier. Group 3 was a subgroup of 21 subjects from groups 1 and 2 that were tested sequentially on both instruments. A fourth group of 26 subjects with diabetes were also recorded using the two parallel amplifiers on mfERG1. P1 implicit times and N1-P1 amplitudes of the 103 local first order mfERGs were measured, and the differences between the instruments and amplifiers were evaluated as raw scores and Z-scores based on normative data. Measurements of individual responses and measurements averaged over the 103 responses were analyzed. Results Simultaneous recordings made on mfERG1 with the two different amplifiers showed differences in implicit times but similar amplitudes. There was a mean implicit time difference of 2.5 ms between the amplifiers but conversion to Z-scores improved their agreement. Recordings made on different days with the two instruments produced similar but more variable results, with amplitudes differing between them more than implicit times. For local response implicit times, the 95% confidence interval of the difference between instruments was approximately ±1 Z-score (±0.9 ms) in either direction. For local response amplitude, it was approximately ±1.6 Z-scores (±0.3 μV). Conclusions Different amplifiers can yield quite different mfERG P1 implicit times, even with identical band-pass settings. However, the reproducibility of mfERG Z-scores across recording instrumentation is relatively high. Comparison of data across systems and laboratories, necessary for multicenter or longitudinal investigations, is facilitated if raw data are converted into Z-scores based on normative data
    corecore