86 research outputs found
Geometry dominated fluid adsorption on sculptured substrates
Experimental methods allow the shape and chemical composition of solid
surfaces to be controlled at a mesoscopic level. Exposing such structured
substrates to a gas close to coexistence with its liquid can produce quite
distinct adsorption characteristics compared to that occuring for planar
systems, which may well play an important role in developing technologies such
as super-repellent surfaces or micro-fluidics. Recent studies have concentrated
on adsorption of liquids at rough and heterogeneous substrates and the
characterisation of nanoscopic liquid films. However, the fundamental effect of
geometry has hardly been addressed. Here we show that varying the shape of the
substrate can exert a profound influence on the adsorption isotherms allowing
us to smoothly connect wetting and capillary condensation through a number of
novel and distinct examples of fluid interfacial phenomena. This opens the
possibility of tailoring the adsorption properties of solid substrates by
sculpturing their surface shape.Comment: 6 pages, 4 figure
Conservation of energy and momenta in nonholonomic systems with affine constraints
We characterize the conditions for the conservation of the energy and of the
components of the momentum maps of lifted actions, and of their `gauge-like'
generalizations, in time-independent nonholonomic mechanical systems with
affine constraints. These conditions involve geometrical and mechanical
properties of the system, and are codified in the so-called
reaction-annihilator distribution
HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV)
is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As
a number of viral proteins Tat is suspected to disturb mitochondrial function.
We prepared pure synthetic full-length Tat by native chemical ligation (NCL),
and Tat peptides, to evaluate their direct effects on isolated mitochondria.
Submicromolar doses of synthetic Tat cause a rapid dissipation of the
mitochondrial transmembrane potential (ΔΨm) as well as
cytochrome c release in mitochondria isolated from mouse liver, heart,
and brain. Accordingly, Tat decreases substrate oxidation by mitochondria
isolated from these tissues, with oxygen uptake being initially restored by
adding cytochrome c. The anion-channel inhibitor
4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects
isolated mitochondria against Tat-induced mitochondrial membrane
permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker,
does not. Pharmacologic inhibitors of the permeability transition pore,
Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce
Tat-induced MMP. We finally observed that Tat inhibits cytochrome c
oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and
brain of both mouse and human samples, making it the first described viral
protein to be a potential COX inhibitor
Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy
Ionic transport inside porous carbon electrodes underpins the storage of energy in supercapacitors and the rate at which they can charge and discharge, yet few studies have elucidated the materials properties that influence ion dynamics. Here we use in situ pulsed field gradient NMR spectroscopy to measure ionic diffusion in supercapacitors directly. We find that confinement in the nanoporous electrode structures decreases the effective self-diffusion coefficients of ions by over two orders of magnitude compared with neat electrolyte, and in-pore diffusion is modulated by changes in ion populations at the electrode/electrolyte interface during charging. Electrolyte concentration and carbon pore size distributions also affect in-pore diffusion and the movement of ions in and out of the nanopores. In light of our findings we propose that controlling the charging mechanism may allow the tuning of the energy and power performances of supercapacitors for a range of different applications
Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry
Characterization of Micro-Mesoporous Materials from Nitrogen and Toluene Adsorption: Experiment and Modeling
Universal mechanisms of adsorption and capillary condensation of toluene and nitrogen on ordered MCM-41 and
PHTS materials are studied by means of high-resolution experiments and Monte Carlo molecular simulations. A
molecular simulation model of toluene adsorption in silica nanopores, which accounts for surface heterogeneity, and
a hybrid molecular-macsroscopic method for pore size distribution (PSD) calculations have been developed. For a
range of reference materials, the PSD results obtained from toluene isotherms are consistent with the results of nitrogen
adsorption using the nonlocal density functional theory method
Plugged hexagonal templated silica: a unique micro- and mesoporous material with internal silica nanocapsules
We describe in this paper the development of plugged hexagonal templated silicas (PHTS) which are hexagonally ordered materials, with internal microporous silica nanocapsules; they have a combined micro- and mesoporosity and a tuneable amount of both open and encapsulated mesopores and are much more stable than other tested micellar templated structures
- …
