662 research outputs found

    LNCS

    Get PDF
    We provide a procedure for detecting the sub-segments of an incrementally observed Boolean signal ω that match a given temporal pattern ϕ. As a pattern specification language, we use timed regular expressions, a formalism well-suited for expressing properties of concurrent asynchronous behaviors embedded in metric time. We construct a timed automaton accepting the timed language denoted by ϕ and modify it slightly for the purpose of matching. We then apply zone-based reachability computation to this automaton while it reads ω, and retrieve all the matching segments from the results. Since the procedure is automaton based, it can be applied to patterns specified by other formalisms such as timed temporal logics reducible to timed automata or directly encoded as timed automata. The procedure has been implemented and its performance on synthetic examples is demonstrated

    Generalized scaling function from light-cone gauge AdS_5 x S^5 superstring

    Full text link
    We revisit the computation of the 2-loop correction to the energy of a folded spinning string in AdS_5 with an angular momentum J in S^5 in the scaling limit log S, J >>1 with J / log S fixed. This correction gives the third term in the strong-coupling expansion of the generalized scaling function. The computation, using the AdS light-cone gauge approach developed in our previous paper, is done by expanding the AdS_5 x S^5 superstring partition function near the generalized null cusp world surface associated to the spinning string solution. The result corrects and extends the previous conformal gauge result of arXiv:0712.2479 and is found to be in complete agreement with the corresponding terms in the generalized scaling function as obtained from the asymptotic Bethe ansatz in arXiv:0805.4615 (and also partially from the quantum O(6) model and the Bethe ansatz data in arXiv:0809.4952). This provides a highly nontrivial strong coupling comparison of the Bethe ansatz proposal with the quantum AdS_5 x S^5 superstring theory, which goes beyond the leading semiclassical term effectively controlled by the underlying algebraic curve. The 2-loop computation we perform involves all the structures in the AdS light-cone gauge superstring action of hep-th/0009171 and thus tests its ultraviolet finiteness and, through the agreement with the Bethe ansatz, its quantum integrability. We do most of the computations for a generalized spinning string solution or the corresponding null cusp surface that involves both the orbital momentum and the winding in a large circle of S^5.Comment: 50 pages, late

    Expression of VjbR under Nutrient Limitation Conditions Is Regulated at the Post-Transcriptional Level by Specific Acidic pH Values and Urocanic Acid

    Get PDF
    VjbR is a LuxR homolog that regulates transcription of many genes including important virulence determinants of the facultative intracellular pathogen Brucella abortus. This transcription factor belongs to a family of regulators that participate in a cell-cell communication process called quorum sensing, which enables bacteria to respond to changes in cell population density by monitoring concentration of self produced autoinducer molecules. Unlike almost all other LuxR-type proteins, VjbR binds to DNA and activates transcription in the absence of any autoinducer signal. To investigate the mechanisms by which Brucella induces VjbR-mediated transcriptional activation, and to determine how inappropriate spatio-temporal expression of the VjbR target genes is prevented, we focused on the study of expression of vjbR itself. By assaying different parameters related to the intracellular lifestyle of Brucella, we identified a restricted set of conditions that triggers VjbR protein expression. Such conditions required the convergence of two signals of different nature: a specific pH value of 5.5 and the presence of urocanic acid, a metabolite involved in the connection between virulence and metabolism of Brucella. In addition, we also observed an urocanic acid, pH-dependent expression of RibH2 and VirB7, two additional intracellular survival-related proteins of Brucella. Analysis of promoter activities and determination of mRNA levels demonstrated that the urocanic acid-dependent mechanisms that induced expression of VjbR, RibH2, and VirB7 act at the post-transcriptional level. Taken together, our findings support a model whereby Brucella induces VjbR-mediated transcription by modulating expression of VjbR in response to specific signals related to the changing environment encountered within the host

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Systematic Neighborhood Observations at High Spatial Resolution: Methodology and Assessment of Potential Benefits

    Get PDF
    There is a growing body of public health research documenting how characteristics of neighborhoods are associated with differences in the health status of residents. However, little is known about how the spatial resolution of neighborhood observational data or community audits affects the identification of neighborhood differences in health. We developed a systematic neighborhood observation instrument for collecting data at very high spatial resolution (we observe each parcel independently) and used it to collect data in a low-income minority neighborhood in Dallas, TX. In addition, we collected data on the health status of individuals residing in this neighborhood. We then assessed the inter-rater reliability of the instrument and compared the costs and benefits of using data at this high spatial resolution. Our instrument provides a reliable and cost-effect method for collecting neighborhood observational data at high spatial resolution, which then allows researchers to explore the impact of varying geographic aggregations. Furthermore, these data facilitate a demonstration of the predictive accuracy of self-reported health status. We find that ordered logit models of health status using observational data at different spatial resolution produce different results. This implies a need to analyze the variation in correlative relationships at different geographic resolutions when there is no solid theoretical rational for choosing a particular resolution. We argue that neighborhood data at high spatial resolution greatly facilitates the evaluation of alternative geographic specifications in studies of neighborhood and health

    Coccolithophore calcification fails to deter microzooplankton grazers.

    Get PDF
    Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi, fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 � 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 � 0.31 and 0.55 � 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO3 in the ocean, and the evolution of coccoliths

    Neotropical Bats: Estimating Species Diversity with DNA Barcodes

    Get PDF
    DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0–11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats

    Continuous and Periodic Expansion of CAG Repeats in Huntington's Disease R6/1 Mice

    Get PDF
    Huntington's disease (HD) is one of several neurodegenerative disorders caused by expansion of CAG repeats in a coding gene. Somatic CAG expansion rates in HD vary between organs, and the greatest instability is observed in the brain, correlating with neuropathology. The fundamental mechanisms of somatic CAG repeat instability are poorly understood, but locally formed secondary DNA structures generated during replication and/or repair are believed to underlie triplet repeat expansion. Recent studies in HD mice have demonstrated that mismatch repair (MMR) and base excision repair (BER) proteins are expansion inducing components in brain tissues. This study was designed to simultaneously investigate the rates and modes of expansion in different tissues of HD R6/1 mice in order to further understand the expansion mechanisms in vivo. We demonstrate continuous small expansions in most somatic tissues (exemplified by tail), which bear the signature of many short, probably single-repeat expansions and contractions occurring over time. In contrast, striatum and cortex display a dramatic—and apparently irreversible—periodic expansion. Expansion profiles displaying this kind of periodicity in the expansion process have not previously been reported. These in vivo findings imply that mechanistically distinct expansion processes occur in different tissues
    • …
    corecore