40 research outputs found

    Frustrating and Diluting Dynamical Lattice Ising Spins

    Full text link
    We investigate what happens to the third order ferromagnetic phase transition displayed by the Ising model on various dynamical planar lattices (ie coupled to 2D quantum gravity) when we introduce annealed bond disorder in the form of either antiferromagnetic couplings or null couplings. We also look at the effect of such disordering for the Ising model on general ϕ3\phi^3 and ϕ4\phi^4 Feynman diagrams.Comment: 7pages, LaTex , LPTHE-ORSAY-94-5

    Is There Quantum Gravity in Two Dimensions?

    Get PDF
    A hybrid model which allows to interpolate between the (original) Regge approach and dynamical triangulations is introduced. The gained flexibility in the measure is exploited to study dynamical triangulation in a fixed geometry. Our numerical results support KPZ exponents. A critical assessment concerning the apparent lack of gravitational effects in two dimensions follows.Comment: 20 pages including 4 figures, uuencoded Z-compressed .tar file created by uufile

    Ising (anti-)ferromagnet on dynamical triangulations and quadrangulations

    Full text link
    We write down matrix models for Ising spins with zero external field on the vertices of dynamical triangulated random surfaces (DTRS) and dynamically quadrangulated random surfaces (DQRS) and compare these with the standard matrix model approach which places the spins on the dual ϕ3\phi^3 and ϕ4\phi^4 graphs. We show that the critical temperatures calculated in the DTRS and DQRS models agree with those deduced from duality arguments in the standard approach. Using the DQRS model we observe that the Ising antiferromagnet still undergoes a phase transition to a Neel (checkerboard) ordered ground state which is absent because of frustration in the other cases.Comment: 5 pages, late

    The critical behaviour of Ising spins on 2D Regge lattices

    Get PDF
    We performed a high statistics simulation of Ising spins coupled to 2D quantum gravity on toroidal geometries. The tori were triangulated using the Regge calculus approach and contained up to 5122512^2 vertices. We used a constant area ensemble with an added R2R^2 interaction term, employing the dl/ldl/l measure. We find clear evidence that the critical exponents of the Ising phase transition are consistent with the static critical exponents and do not depend on the coupling strength of the R2R^2 interaction term. We definitively can exclude for this type of model a behaviour as predicted by Boulatov and Kazakov [Phys. Lett. {\bf B186}, 379 (1987)] for Ising spins coupled to dynamically triangulated surfaces.Comment: 15 pages with 3 figures in form of an uudecoded compressed tar-ps-file. FUB-HEP 06/9

    Dynamically Triangulated Ising Spins in Flat Space

    Full text link
    A model describing Ising spins with short range interactions moving randomly in a plane is considered. In the presence of a hard core repulsion, which prevents the Ising spins from overlapping, the model is analogous to a dynamically triangulated Ising model with spins constrained to move on a flat surface. It is found that as a function of coupling strength and hard core repulsion the model exhibits multicritical behavior, with first and second order transition lines terminating at a tricritical point. The thermal and magnetic exponents computed at the tricritical point are consistent with the exact two-matrix model solution of the random Ising model, introduced previously to describe the effects of fluctuating geometries.Comment: (10 pages + 4 figures), CERN-Th-7577/9

    Square Gravity

    Full text link
    We simulate the Ising model on dynamical quadrangulations using a generalization of the flip move for triangulations with two aims: firstly, as a confirmation of the universality of the KPZ/DDK exponents of the Ising phase transition, worthwhile in view of some recent surprises with other sorts of dynamical lattices; secondly, to investigate the transition of the Ising antiferromagnet on a dynamical loosely packed (bipartite) lattice. In the latter case we show that it is still possible to define a staggered magnetization and observe the antiferromagnetic analogue of the transition.Comment: LaTeX file and 7 postscript figures bundled together with uufile

    Dgsos on DTRS

    Full text link
    We perform simulations of a discrete gaussian solid on solid (DGSOS) model on dynamical ϕ3\phi^3 graphs, which is equivalent to coupling the model to 2d quantum gravity, using the cluster algorithms recently developed by Evertz et.al.for use on fixed lattices. We find evidence from the growth of the width-squared in the rough phase of KT-like behaviour, which is consistent with theoretical expectations. We also investigate the cluster statistics, dynamical critical exponent and lattice properties, and compare these with the dual XY model.Comment: 9 pages, COLO-HEP-32

    Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    Full text link
    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\it multiple} q=2,3,4q=2,3,4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1c>1.Comment: 9 page

    Quenching 2D Quantum Gravity

    Full text link
    We simulate the Ising model on a set of fixed random ϕ3\phi^3 graphs, which corresponds to a {\it quenched} coupling to 2D gravity rather than the annealed coupling that is usually considered. We investigate the critical exponents in such a quenched ensemble and compare them with measurements on dynamical ϕ3\phi^3 graphs, flat lattices and a single fixed ϕ3\phi^3 graph.Comment: 8 page

    Segregation trends of the metal alloys Mo-Re and Mo-Pt on HfO2: A first-principles study

    Get PDF
    Using first-principles calculations, we compared the segregation trends at the surface of metal alloys with those at an interface with HfO2. The choice of this oxide was motivated by its significance as a potential replacement for SiO2 in advanced transistors. We considered Mo-Re and Mo-Pt alloys as typical examples of disordered and ordered alloys, respectively. The segregation to the surface/interface was analyzed in terms of metal and oxygen adsorption energies. It is shown that chemical bonding at the metal/oxide interface strongly influences segregation both in Mo-Re and Mo-Pt alloys. In particular, bonding with oxygen atoms at the oxide/Mo-Re alloy interface depletes the Re content of the interfacial layer. In the case of Mo-Pt on HfO2 an oxygen-rich interface promotes the formation of one monolayer (but not two monolayers) of Mo separating PtMox from HfO2, while a stoichiometric interface favors an abrupt PtMox/HfO2 interface. This study also shows that the presence of Mo in the alloy stabilizes Pt which can potentially decrease the tendency of Pt to diffuse into the oxide matrix. The individual constituents of these intermetallic compounds exhibit high vacuum work functions, and therefore these alloys are also likely to have sufficiently high work functions to be considered as promising candidates for p-type gate electrodes in future generations of transistors. (c) 2006 American Institute of Physics.100
    corecore