908 research outputs found

    Screening and Deconfinement of Sources in Finite Temperature SU(2) Lattice Gauge Theory

    Full text link
    Deconfinement and screening of higher-representation sources in finite-temperature SU(2)SU(2) lattice gauge theory is investigated by both analytical and numerical means. The effective Polyakov-line action at strong coupling is simulated by an efficient cluster-updating Monte Carlo algorithm for the case of d ⁣= ⁣4d\!=\!4 dimensions. The results compare very favourably with an improved mean-field solution. The limit d ⁣ ⁣d\!\to\!\infty of the SU(2)SU(2) theory is shown to be highly singular as far as critical behaviour is concerned. In that limit the leading amplitudes of higher representation Polyakov lines vanish at strong coupling, and subleading exponents become dominant. Each of the higher-representation sources then effectively carry with them their own critical exponents.Comment: 13pages+7figures, CERN-TH-7222/94 One reference added, else unchange

    Brauer-Thrall for totally reflexive modules over local rings of higher dimension

    Full text link
    Let RR be a commutative Noetherian local ring. Assume that RR has a pair {x,y}\{x,y\} of exact zerodivisors such that dimR/(x,y)2\dim R/(x,y)\ge2 and all totally reflexive R/(x)R/(x)-modules are free. We show that the first and second Brauer--Thrall type theorems hold for the category of totally reflexive RR-modules. More precisely, we prove that, for infinitely many integers nn, there exists an indecomposable totally reflexive RR-module of multiplicity nn. Moreover, if the residue field of RR is infinite, we prove that there exist infinitely many isomorphism classes of indecomposable totally reflexive RR-modules of multiplicity nn.Comment: to appear in Algebras and Representation Theor

    Unsupervised Deformable Image Registration Using Cycle-Consistent CNN

    Full text link
    Medical image registration is one of the key processing steps for biomedical image analysis such as cancer diagnosis. Recently, deep learning based supervised and unsupervised image registration methods have been extensively studied due to its excellent performance in spite of ultra-fast computational time compared to the classical approaches. In this paper, we present a novel unsupervised medical image registration method that trains deep neural network for deformable registration of 3D volumes using a cycle-consistency. Thanks to the cycle consistency, the proposed deep neural networks can take diverse pair of image data with severe deformation for accurate registration. Experimental results using multiphase liver CT images demonstrate that our method provides very precise 3D image registration within a few seconds, resulting in more accurate cancer size estimation.Comment: accepted for MICCAI 201

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter

    Full text link
    The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter's temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk, 3-5 June 201

    Hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet

    Full text link
    Superconductivity in layered copper-oxide compounds emerges when charge carriers are added to antiferromagnetically-ordered CuO2 layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to super-conductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual `hour-glass' feature in the momentum-resolved magnetic spectrum, present in a wide range of superconducting and non-superconducting materials. There is no widely-accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, an idea supported by measurements on stripe-ordered La1.875Ba0.125CuO4. However, many copper oxides without stripe order also exhibit an hour-glass spectrum$. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper-oxide superconductors arises from fluctuating stripes.Comment: 13 pages, 4 figures, to appear in Natur

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur

    Adjusting for multiple prognostic factors in the analysis of randomised trials

    Get PDF
    Background: When multiple prognostic factors are adjusted for in the analysis of a randomised trial, it is unclear (1) whether it is necessary to account for each of the strata, formed by all combinations of the prognostic factors (stratified analysis), when randomisation has been balanced within each stratum (stratified randomisation), or whether adjusting for the main effects alone will suffice, and (2) the best method of adjustment in terms of type I error rate and power, irrespective of the randomisation method. Methods: We used simulation to (1) determine if a stratified analysis is necessary after stratified randomisation, and (2) to compare different methods of adjustment in terms of power and type I error rate. We considered the following methods of analysis: adjusting for covariates in a regression model, adjusting for each stratum using either fixed or random effects, and Mantel-Haenszel or a stratified Cox model depending on outcome. Results: Stratified analysis is required after stratified randomisation to maintain correct type I error rates when (a) there are strong interactions between prognostic factors, and (b) there are approximately equal number of patients in each stratum. However, simulations based on real trial data found that type I error rates were unaffected by the method of analysis (stratified vs unstratified), indicating these conditions were not met in real datasets. Comparison of different analysis methods found that with small sample sizes and a binary or time-to-event outcome, most analysis methods lead to either inflated type I error rates or a reduction in power; the lone exception was a stratified analysis using random effects for strata, which gave nominal type I error rates and adequate power. Conclusions: It is unlikely that a stratified analysis is necessary after stratified randomisation except in extreme scenarios. Therefore, the method of analysis (accounting for the strata, or adjusting only for the covariates) will not generally need to depend on the method of randomisation used. Most methods of analysis work well with large sample sizes, however treating strata as random effects should be the analysis method of choice with binary or time-to-event outcomes and a small sample size

    Evaluating the use of the Child and Adolescent Intellectual Disability Screening Questionnaire (CAIDS-Q) to estimate IQ in children with low intellectual ability

    Get PDF
    In situations where completing a full intellectual assessment is not possible or desirable the clinician or researcher may require an alternative means of accurately estimating intellectual functioning. There has been limited research in the use of proxy IQ measures in children with an intellectual disability or low IQ. The present study aimed to provide a means of converting total scores from a screening tool (the Child and Adolescent Intellectual Disability Screening Questionnaire: CAIDS-Q) to an estimated IQ. A series of linear regression analyses were conducted on data from 428 children and young people referred to clinical services, where FSIQ was predicted from CAIDS-Q total scores. Analyses were conducted for three age groups between ages 6 and 18 years. The study presents a conversion table for converting CAIDS-Q total scores to estimates of FSIQ, with corresponding 95% prediction intervals to allow the clinician or researcher to estimate FSIQ scores from CAIDS-Q total scores. It is emphasised that, while this conversion may offer a quick means of estimating intellectual functioning in children with a below average IQ, it should be used with caution, especially in children aged between 6 and 8 years old
    corecore