546 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    The representations of adolescents about gynecological consultation

    Get PDF
    Objective: To analyze the social representation of adolescents about gynecological consultation and the influence of those in searching for consultations. Method: Qualitative descriptive study based on the Social Representations Theory, conducted with 50 adolescents in their last year of middle school. The data was collected between April and May of 2010 by Evocations and a Focal Group. The software EVOC and contextual analysis were used in the data treatment. Results: The elements fear and constraint, constant in the central nucleus, can justify the low frequency of adolescents in consultations. The term embarrassment in the peripheral system reinforce current sociocultural norms, while prevention, associated with learning about sex and clarifying doubts, allows to envision an educative function. Obtained testimonies in the focal groups exemplify and reinforce those findings. Conclusion: For an effective health education, professionals, including nurses, need to clarify the youth individually and collectively about their rights to privacy, secrecy, in addition to focus the gynecological consultation as a promotion measure to sexual and reproductive health

    AIDS and jail: social representations of women in freedom deprivation situations

    Get PDF
    Abstract OBJECTIVE To graspthe AIDS social representations built by freedom-deprived women. METHOD Descriptive study with a quali-quantitative approach that involved 174 convicted women in a women's prison in a capital city of the Brazilian northeastern region. Aword-association test was applied in October and November 2014, using AIDS as a stimulus. The corpuswas processed usingIramuteq software. Descending Hierarchical Classification and Correspondence Factor Analysis were applied. RESULTS The content that comprises the social representation of AIDS was influenced by the prison context, which was pervaded by a lack of assistance, lack of knowledge, discrimination, and suffering that disclosed vulnerability to HIV/AIDS factors such as unprotected sex and object sharing. This underlines the stigma and fear of the illness, in addition to favoring and supporting negative feelings and a sense of rejection. CONCLUSION To consider the use of this representational amalgam to ensure a comprehensive, contextualized care can help redirect practices, motivate self-care practices, and reduce prejudiced attitudes

    New Strategies in Modeling Electronic Structures and Properties with Applications to Actinides

    Full text link
    This chapter discusses contemporary quantum chemical methods and provides general insights into modern electronic structure theory with a focus on heavy-element-containing compounds. We first give a short overview of relativistic Hamiltonians that are frequently applied to account for relativistic effects. Then, we scrutinize various quantum chemistry methods that approximate the NN-electron wave function. In this respect, we will review the most popular single- and multi-reference approaches that have been developed to model the multi-reference nature of heavy element compounds and their ground- and excited-state electronic structures. Specifically, we introduce various flavors of post-Hartree--Fock methods and optimization schemes like the complete active space self-consistent field method, the configuration interaction approach, the Fock-space coupled cluster model, the pair-coupled cluster doubles ansatz, also known as the antisymmetric product of 1 reference orbital geminal, and the density matrix renormalization group algorithm. Furthermore, we will illustrate how concepts of quantum information theory provide us with a qualitative understanding of complex electronic structures using the picture of interacting orbitals. While modern quantum chemistry facilitates a quantitative description of atoms and molecules as well as their properties, concepts of quantum information theory offer new strategies for a qualitative interpretation that can shed new light onto the chemistry of complex molecular compounds.Comment: 43 pages, 3 figures, Version of Recor

    EFAS upgrade for the extended model domain

    Get PDF
    This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication.JRC.E.1-Disaster Risk Managemen

    EFAS upgrade for the extended model domain

    Get PDF
    This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication.JRC.E.1-Disaster Risk Managemen

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF
    corecore