1,863 research outputs found

    The BAHAMAS project: Effects of a running scalar spectral index on large-scale structure

    Get PDF
    Recent analyses of the cosmic microwave background (CMB) and the Lyman-alpha forest indicate a mild preference for a deviation from a power law primordial matter power spectrum (a so-called negative `running'). We use an extension to the BAHAMAS suite of cosmological hydrodynamic simulations to explore the effects that a running scalar spectral index has on large-scale structure (LSS), using Planck CMB constraints to initialize the simulations. We focus on 5 key statistics: i) the non-linear matter power spectrum ii) the halo mass function; iii) the halo two-point auto correlation function; iv) total mass halo density profiles; and v) the halo concentration-mass relation. In terms of the matter power spectrum, we find that a running scalar spectral index affects all k-scales examined in this study, with a negative (positive) running leading to an amplification (suppression) of power. These effects should be easily detectable with upcoming surveys such as LSST and Euclid. In the mass range sampled, a positive running leads to an increase in the mass of galaxy groups and clusters, with the favoured negative running leading to a decrease in mass of lower-mass (M ~ 10^13 M_solar) halos. Changes in the mass are generally confined to 5-10% which, while not insignificant, cannot by itself reconcile the claimed tension between the primary CMB and cluster number counts. We find that running does not significantly affect the shapes of density profiles of matched halos, changing only their amplitude. Finally, we demonstrate that the observed effects on LSS due to a running scalar spectral index are separable from those of baryonic effects to typically a few percent precision

    The BAHAMAS project: Effects of dynamical dark energy on large-scale structure

    Get PDF
    In this work we consider the impact of spatially-uniform but time-varying dark energy (or `dynamical dark energy', DDE) on large-scale structure in a spatially flat universe, using large cosmological hydrodynamical simulations that form part of the BAHAMAS project. As DDE changes the expansion history of the universe, it impacts the growth of structure. We explore variations in DDE that are constrained to be consistent with the cosmic microwave background. We find that DDE can affect the clustering of matter and haloes at the ~10% level (suppressing it for so-called `freezing' models, while enhancing it for `thawing' models), which should be distinguishable with upcoming large-scale structure surveys. DDE cosmologies can also enhance or suppress the halo mass function (with respect to LCDM) over a wide range of halo masses. The internal properties of haloes are minimally affected by changes in DDE, however. Finally, we show that the impact of baryons and associated feedback processes is largely independent of the change in cosmology and that these processes can be modelled separately to typically better than a few percent accurac

    SP(k) -- A hydrodynamical simulation-based model for the impact of baryon physics on the non-linear matter power spectrum

    Get PDF
    Upcoming large-scale structure surveys will measure the matter power spectrum to approximately percent level accuracy with the aim of searching for evidence for new physics beyond the standard model of cosmology. In order to avoid biasing our conclusions, the theoretical predictions need to be at least as accurate as the measurements for a given choice of cosmological parameters. However, recent theoretical work has shown that complex physical processes associated with galaxy formation (particularly energetic feedback processes associated with stars and especially supermassive black holes) can alter the predictions by many times larger than the required accuracy. Here we present SP(k), a model for the effects of baryon physics on the non-linear matter power spectrum based on a new large suite of hydrodynamical simulations. Specifically, the ANTILLES suite consists of 400 simulations spanning a very wide range of the ‘feedback landscape’ and show that the effects of baryons on the matter power spectrum can be understood at approaching the percent level in terms of the mean baryon fraction of haloes, at scales of up to k  ≲  10h Mpc−1 and redshifts up to z = 3. For the range of scales and redshifts that will be probed by forthcoming cosmic shear measurements, most of the effects are driven by galaxy group-mass haloes (M ∼ 1013 − 14 M⊙). We present a simple Python implementation of our model, available at https://github.com/jemme07/pyspk, which can be used to incorporate baryon effects in standard gravity-only predictions, allowing for marginalisation over baryon physics within cosmological pipelines

    SP(k) - A hydrodynamical simulation-based model for the impact of baryon physics on the non-linear matter power spectrum

    Get PDF
    Upcoming large-scale structure surveys will measure the matter power spectrum to approximately percent level accuracy with the aim of searching for evidence for new physics beyond the standard model of cosmology. In order to avoid biasing our conclusions, the theoretical predictions need to be at least as accurate as the measurements for a given choice of cosmological parameters. However, recent theoretical work has shown that complex physical processes associated with galaxy formation (particularly energetic feedback processes associated with stars and especially supermassive black holes) can alter the predictions by many times larger than the required accuracy. Here we present SP(k), a model for the effects of baryon physics on the non-linear matter power spectrum based on a new large suite of hydrodynamical simulations. Specifically, the ANTILLES suite consists of 400 simulations spanning a very wide range of the ‘feedback landscape’ and show that the effects of baryons on the matter power spectrum can be understood at approaching the percent level in terms of the mean baryon fraction of haloes, at scales of up to k  ≲  10h Mpc−1 and redshifts up to z = 3. For the range of scales and redshifts that will be probed by forthcoming cosmic shear measurements, most of the effects are driven by galaxy group-mass haloes (M ∼ 1013 − 14 M⊙). We present a simple Python implementation of our model, available at https://github.com/jemme07/pyspk, which can be used to incorporate baryon effects in standard gravity-only predictions, allowing for marginalisation over baryon physics within cosmological pipelines

    Anaphylactic response to topical fluorescein 2% eye drops: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The intravenous use of fluorescein 10% during retinal angiography can cause severe systemic reactions including, on rare occasions, anaphylaxis. Fluorescein 2% eye drops are used extensively for clinical examination and diagnosis, but to the best of our knowledge, they have only been reported as being responsible for a systemic anaphylactic response on two previous occasions.</p> <p>Case presentation</p> <p>We report the case of a 51-year-old woman who developed an anaphylactic reaction when she was administered fluorescein sodium 2% eye drops after cataract surgery. This was the second time she had been exposed to fluorescein. She had brittle asthma and a history of anaphylaxis following exposure to a variety of drug and food allergens. She was successfully resuscitated and recovered completely over a period of two days.</p> <p>Conclusions</p> <p>Fluorescein 2% drops are universally used in general practice, ophthalmology, optometry, and casualty departments. Our case report reveals the potential for this benign eye drop to cause a life-threatening systemic reaction and emphasises the importance of considering this consequence when administering topical fluorescein 2% to a patient with a history of anaphylaxis to other allergens.</p

    Testing extensions to LCDM on small scales with forthcoming cosmic shear surveys

    Get PDF
    We investigate the constraining power of forthcoming Stage-IV weak lensing surveys (Euclid, LSST, and NGRST) for extensions to the LCDM model on small scales, via their impact on the cosmic shear power spectrum. We use high-resolution cosmological simulations to calculate how warm dark matter (WDM), self-interacting dark matter (SIDM) and a running of the spectral index affect the non-linear matter power spectrum, P(k), as a function of scale and redshift. We evaluate the cosmological constraining power using synthetic weak lensing observations derived from these power spectra and that take into account the anticipated source densities, shape noise and cosmic variance errors of upcoming surveys. We show that upcoming Stage-IV surveys will be able to place useful, independent constraints on both WDM models (ruling out models with a particle mass of 10 cm^2 g^-1) through their effects on the small-scale cosmic shear power spectrum. Similarly, they will be able to strongly constrain cosmologies with a running spectral index. Finally, we explore the error associated with the cosmic shear cross-spectrum between tomographic bins, finding that it can be significantly affected by Poisson noise (the standard assumption is that the Poisson noise cancels between tomographic bins). We provide a new analytic form for the error on the cross-spectrum which accurately captures this effect

    The BAHAMAS project: Evaluating the accuracy of the halo model in predicting the non-linear matter power spectrum

    Get PDF
    The halo model formalism is widely adopted in cosmological studies for predicting the growth of large-scale structure in the Universe. However, to date there have been relatively few direct comparisons of the halo model with more accurate (but much more computationally expensive) cosmological simulations. We test the accuracy of the halo model in reproducing the non-linear matter power spectrum, P(k), when the main inputs of the halo model (specifically the matter density profiles, halo mass function, and linear bias) are taken directly from the BAHAMAS simulations and we assess how well the halo model reproduces P(k) from the same simulations. We show that the halo model generally reproduces P(k) in the deep non-linear regime (1-halo) to typically a few percent accuracy, but struggles to reproduce (approx. 15% error) P(k) at intermediate scales of 0.1 < k [h/ Mpc] < 3 at z=0, marking the transition between the 1-halo and 2-halo terms. We show that the magnitude of this error is a strong function of the halo mass definition (through its effects on radial extent of haloes) and of redshift. Furthermore, we test the accuracy of the halo model in recovering the relative impact of baryons on P(k). We show that the systematic errors in recovering the absolute P(k) largely cancel when considering the relative impact of baryons. This suggests that the halo model can make precise predictions for the baryonic suppression, offering a fast and accurate way to adjust collisionless matter power spectra for the presence of baryons and associated processes

    The association of health literacy with adherence in older 2 adults, and its role in interventions: a systematic meta-review

    Get PDF
    Background: Low health literacy is a common problem among older adults. It is often suggested to be associated with poor adherence. This suggested association implies a need for effective adherence interventions in low health literate people. However, previous reviews show mixed results on the association between low health literacy and poor adherence. A systematic meta-review of systematic reviews was conducted to study the association between health literacy and adherence in adults above the age of 50. Evidence for the effectiveness of adherence interventions among adults in this older age group with low health literacy was also explored. Methods: Eight electronic databases (MEDLINE, ERIC, EMBASE, PsycINFO, CINAHL, DARE, the Cochrane Library, and Web of Knowledge) were searched using a variety of keywords regarding health literacy and adherence. Additionally, references of identified articles were checked. Systematic reviews were included if they assessed the association between health literacy and adherence or evaluated the effectiveness of interventions to improve adherence in adults with low health literacy. The AMSTAR tool was used to assess the quality of the included reviews. The selection procedure, data-extraction, and quality assessment were performed by two independent reviewers. Seventeen reviews were selected for inclusion. Results: Reviews varied widely in quality. Both reviews of high and low quality found only weak or mixed associations between health literacy and adherence among older adults. Reviews report on seven studies that assess the effectiveness of adherence interventions among low health literate older adults. The results suggest that some adherence interventions are effective for this group. The interventions described in the reviews focused mainly on education and on lowering the health literacy demands of adherence instructions. No conclusions could be drawn about which type of intervention could be most beneficial for this population. Conclusions: Evidence on the association between health literacy and adherence in older adults is relatively weak. Adherence interventions are potentially effective for the vulnerable population of older adults with low levels of health literacy, but the evidence on this topic is limited. Further research is needed on the association between health literacy and general health behavior, and on the effectiveness of interventions

    Prognostic impact of tumour-specific HMG-CoA reductase expression in primary breast cancer

    Get PDF
    Introduction We have previously reported that tumour-specific expression of the rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR), in the mevalonate pathway is associated with more favourable tumour parameters in breast cancer. In the present study, we examined the prognostic value of HMG-CoAR expression in a large cohort of primary breast cancer patients with long-term follow up. Methods The expression of HMG-CoAR was assessed by immunohistochemistry on tissue microarrays with tumour specimens from 498 consecutive cases of breast cancer with a median follow-up of 128 months. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the rate of recurrence-free survival (RFS) and breast cancer specific survival (BCSS). Results In line with our previous findings, tumour-specific HMG-CoAR expression was associated with low grade (p < 0.001), small size (p = 0.007), oestrogen receptor (ER) positive (p = 0.01), low Ki-67 (p = 0.02) tumours. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS, even when adjusted for established prognostic factors (relative risk [RR] = 0.60, 95% confidence interval [CI] 0.40 to 0.92; p = 0.02). In ER-negative tumours, however, there was a trend, that was not significantly significant, towards a shorter RFS in HMG-CoAR expressing tumours. Conclusions HMG-CoAR expression is an independent predictor of a prolonged RFS in primary breast cancer. This may, however, not be true for ER-negative tumours. Further studies are needed to shed light on the value of HMG-CoAR expression as a surrogate marker of response to statin treatment, especially with respect to hormone receptor status
    • …
    corecore