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ABSTRACT
We investigate the constraining power of forthcoming Stage-IVweak lensing surveys (Euclid,LSST, andNGRST) for extensions
to the ΛCDMmodel on small scales, via their impact on the cosmic shear power spectrum. We use high-resolution cosmological
simulations to calculate how warm dark matter (WDM), self-interacting dark matter (SIDM) and a running of the spectral index
affect the non-linear matter power spectrum, 𝑃(𝑘), as a function of scale and redshift. We evaluate the cosmological constraining
power using synthetic weak lensing observations derived from these power spectra and that take into account the anticipated
source densities, shape noise and cosmic variance errors of upcoming surveys. We show that upcoming Stage-IV surveys will
be able to place useful, independent constraints on both WDM models (ruling out models with a particle mass of <∼ 0.5 keV)
and SIDM models (ruling out models with a velocity-independent cross-section of >∼ 10 cm

2 g−1) through their effects on the
small-scale cosmic shear power spectrum. Similarly, they will be able to strongly constrain cosmologies with a running spectral
index. Finally, we explore the error associated with the cosmic shear cross-spectrum between tomographic bins, finding that it
can be significantly affected by Poisson noise (the standard assumption is that the Poisson noise cancels between tomographic
bins). We provide a new analytic form for the error on the cross-spectrum which accurately captures this effect.

Key words: cosmological parameters – dark matter – gravitational lensing: weak – software: simulations

1 INTRODUCTION

In the current concordance cosmological framework, termed the
ΛCDM (Λ-cold dark matter) model, structure in the Universe forms
hierarchically. The initial density perturbations laid down by inflation
eventually grow large enough that they become gravitationally unsta-
ble and collapse to form low-mass ‘haloes’. These low-mass haloes
merge to build up progressively larger systems, eventually culminat-
ing in the large-scale structure (LSS) that we observe today (see, e.g.,
Davis et al. 1985). This theoretical picture has been immensely pow-
erful in describing observations of our Universe, accurately repro-
ducing the observed properties of the cosmic microwave background
(see e.g. the recent results from Planck Collaboration et al. 2020)
as well as low-redshift probes such as baryon acoustic oscillations
(Eisenstein et al. 2005) and redshift-space distortions (see e.g. Alam
et al. 2017). Given its success, this theoretical framework has come
to be known as the ‘standard model of cosmology’.
It is noteworthy that, while theΛCDMmodel accurately describes

many observables on large scales, there have been a number of re-
cent mild tensions reported in the best-fit parameter values for certain
cosmological parameters, including the Hubble constant (see Verde
et al. 2019 for a review) and the LSS parameter 𝑆8 ≡ 𝜎8
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(see, e.g., discussion in McCarthy et al. 2018) as derived from in-
dependent measurements. Whether these tensions are signaling the
presence of unaccounted for systematic errors in some of the cosmo-
logical analyses, that there is new physics (i.e., beyond the standard
model), or that they are merely the result of statistical fluctuations, is
presently unclear and the subject of much investigation.

Although the ΛCDM model does remarkably well at describing
observations of our Universe on large scales (tens to hundreds of
Mpc, modulo the recent mild tensions described above), the last
decade or so has seen a ramping up of detailed comparisons on
smaller scales (typically kpc to Mpc), some of which have reported
significant tensions with the predictions of ΛCDM-based cosmolog-
ical simulations. Three of the most widely discussed tensions are
the ‘cusp-core’ problem (Flores & Primack 1994; Moore 1994), the
‘missing satellites’ problem (Klypin et al. 1999; Moore et al. 1999)
and the ‘too-big-to-fail’ problem (Boylan-Kolchin et al. 2011). The
common thread between these tensions is that the ΛCDMmodel ap-
pears to predict too much structure (and too high densities) on small
scales compared with what is inferred from observations. These ten-
sions are often evaluated with respect to gravity-only calculations in
the context of ΛCDM, but recent work has suggested that neglect-
ing important baryonic physics may have significant implications for
these tensions. For example, including processes such as reionisation,
star formation, stellar feedback through supernovae and winds, and
feedback associated with active galactic nuclei in the models have

© 2015 The Authors

ar
X

iv
:2

10
9.

11
95

6v
1 

 [
as

tr
o-

ph
.C

O
] 

 2
4 

Se
p 

20
21
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been shown to help alleviate some of these problems withΛCDM on
small scales (see e.g. Efstathiou 1992; Bullock et al. 2000; Benson
et al. 2002; Mashchenko et al. 2008; Pontzen & Governato 2012;
Wetzel et al. 2016; Sawala et al. 2016).
Nevertheless, it is worthwhile to consider other possibilities, which

may act in conjunction with baryon physics, for these small scale
problems, not least because the modelling of baryon physics on small
scales is quite complex and requires a degree of fine tuning to resolve
some of the aforementioned tensions. Also, it is important that we
continue to test the standard model as rigorously as possible on small
scales, in order to shed light on the nature of dark matter.
The apparent deficit of small-scale structure has led to the study

and development of many extensions to the ΛCDM model which
aim to reconcile these differences. Promising extensions to the cur-
rent ΛCDM paradigm, such as warm dark matter (WDM) and self-
interacting dark matter (SIDM), can reduce the formation of struc-
ture on small scales. These different cosmological models focus on
changing one of the assumed aspects of dark matter. In the case
of the former, dark matter decouples in the early universe whilst
still relativistic leading to non-negligible thermal velocities and free-
streaming, while in the latter case dark matter is allowed to have
strong self-interactions (scattering). Both of these extensions have
been shown to have success in alleviating the outlined challenges
which exist with ΛCDM (see e.g. Colín et al. 2000; Lovell et al.
2012 for the case of WDM and Spergel & Steinhardt 2000; Zavala
et al. 2013 for the case of SIDM). One further extension which has
not been studied quite so extensively is a running scalar spectral
index. A running spectral index is different from the previous two
extensions as it does not alter the nature of dark matter but instead
changes the initial conditions for structure formation, which is mo-
tivated by certain classes of inflation models. Previously this has
also been demonstrated to be a promising candidate for reducing the
formation of small-scale structure (see e.g. Garrison-Kimmel et al.
2014; Stafford et al. 2020b).
In a recent paper (Stafford et al. 2020b),we compared howeffective

these three different extensions were in altering various small-scale
structure statistics. To do this we used gravity-only cosmological
simulations with the values adopted for the additional parameters
associated with each extension being guided by current observational
constraints. We found that all of the models can have similar effects
on certain statistics, such as the abundance of satellite galaxies inside
hosts (which is one of the primary tests of ΛCDM on small scales).
As such, it is of interest to explore new observables which could
help differentiate these models and the effects they have on structure
formation.
In this study, we exploit the fact that these different models alter the

non-linear matter power spectrum along with its redshift evolution in
different ways (as we will show). Consequently, observational probes
which are directly sensitive to the non-linear matter power spectrum
may provide a strong test of these extensions and of ΛCDM. One
potentially promising observable is the cosmic shear power spectrum.
As the light emitted from distant galaxies travels towards us on Earth,
its path becomes distorted due to intervening matter, a phenomenon
known as gravitational lensing. One can use the correlated effect
this has on galaxy shapes to extract information about the non-linear
matter power spectrum. This can be done either through the two-point
auto-correlation function of galaxy shapes or its Fourier analogue,
the cosmic shear power spectrum. It is this latter statistic that we
examine in this paper and how it is affected by SIDM, WDM and a
running spectral index in comparison with the ΛCDM result.
The impetus for this study stems from the increasing quantity and

quality of cosmic shear observations being made by current Stage-III

surveys, such as the Dark Energy Survey (DES)1 (DES Collabora-
tion et al. 2021), the Hyper Suprime-Cam Subaru Strategic Survey
(HSC)2 (Hamana et al. 2020), and the Kilo-Degree Survey (KiDS)3
(Asgari et al. 2021), and forthcoming Stage-IV cosmic shear surveys,
such asEuclid4 (EuclidCollaboration et al. 2020a), theRubinObser-
vatory Legacy Survey of Space and Time (LSST)5 (Zhan & Tyson
2018), and the Nancy Grace Roman Space Telescope (NGRST)6
(Spergel et al. 2015). Stage-IV surveys will greatly improve on cur-
rent observations, by covering a much larger area of the sky and/or
being significantly deeper, ultimately resulting in greatly improved
measurements of the cosmic shear power spectrum.
To date most of the forecasting work for Stage-IV surveys has

been with regards to anticipated constraints on the standard model
of cosmology and extensions that affect large-scale structure (such
as evolving dark energy and massive neutrinos). Only a small num-
ber of studies have been dedicated to the possible constraints that
may be obtained for small-scale extensions. For example, Markovic
et al. (2011) explored how future cosmic shear surveys can be used
to place constraints on the mass of thermal relic particles. More re-
cently, Hubert et al. (2021) explored constraints on decaying dark
matter models. The present paper seeks to examine the impact of the
three cosmological extensions described above (WDM, SIDM, and
a running scalar spectral index) on the cosmic shear power spectrum
using the non-linear matter power spectrum extracted from numer-
ical simulations. We then explore the prospect of these upcoming
Stage-IV surveys in differentiating these extensions from ΛCDM.
The paper is structured as follows. In Section 2 we describe in

more detail the extensions studied in this paper. We also discuss the
numerical simulations which we use as well as how we create a non-
linear matter power spectrum which covers the full dynamic range
of interest for this weak lensing study. In Section 3 we discuss how
we compute the cosmic shear power spectrum and the associated
uncertainties. In Section 4 we present our results for the cosmic
shear auto- and cross-correlation power spectra for each cosmological
model and finally in Section 5 we discuss and summarise our results.

2 COSMOLOGICAL EXTENSIONS

In this study, we analyse three separate cosmological extensions, a
running scalar spectral index, warm dark matter and self-interacting
dark matter. We briefly describe these in the following subsections
and refer the interested reader to Stafford et al. (2020b) for further
details. Note, however, in Stafford et al. (2020b) we only examined
two WDM models and two SIDM models, whereas in this study we
extend our analysis slightly and look at an additional, more extreme,
case for both of these extensions.

2.1 Extensions

2.1.1 Running of the scalar spectral index

In the standard model of cosmology, the power spectrum for scalar
perturbations generated by inflation is assumed to follow a simple

1 https://www.darkenergysurvey.org/
2 https://hsc.mtk.nao.ac.jp/ssp/survey/
3 http://kids.strw.leidenuniv.nl/overview.php
4 https://www.euclid-ec.org/?page_id=2581
5 https://www.lsst.org/scientists/
6 https://www.jpl.nasa.gov/missions/the-nancy-grace-roman-space-
telescope
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Constraining cosmological extensions with cosmic shear 3

power law of the form (Guth 1981; Kosowsky & Turner 1995):

𝑃(𝑘) = 𝐴𝑘𝑛𝑠 , (1)

where 𝐴 is the amplitude of the primordial matter power spectrum, 𝑘
is the wavenumber and 𝑛𝑠 is the spectral index. A first order extension
is that the spectral index has some level of scale dependence, which
results in a modification to the functional form of the primordial
matter power spectrum (Kosowsky & Turner 1995):

𝑃(𝑘) = 𝐴𝑠 (𝑘pivot)
(

𝑘

𝑘pivot

)𝑛𝑠 (𝑘pivot)+ 𝛼𝑠
2 ln

(
𝑘

𝑘pivot

)
. (2)

Here, 𝛼𝑠 is termed the ‘running’ of the scalar spectral index and is
defined as 𝑑𝑛𝑠 (𝑘)/𝑑 ln(𝑘)7. Here, 𝑛𝑠 (𝑘) is still equal to the logarith-
mic slope of the power spectrum, however, it now has a 𝑘-dependence
due to the (𝛼𝑠/2) ln(𝑘/𝑘pivot) term in equation 2. The value adopted
for 𝑘pivot here corresponds to that for the Planck satellite mission,
𝑘pivot = 0.05 Mpc−1, and corresponds to the 𝑘−scale at which values
for 𝐴𝑠 and 𝑛𝑠 are quoted. In thisworkwe explore the effects that a pos-
itive value for the running (with 𝛼𝑠 = 0.00791) and a negative value
for the running (with 𝛼𝑠 = −0.02473) have on the non-linear matter
power spectrum and how these propagate through to an observable
impact on the cosmic shear power spectrum. Note the cosmological
parameter values chosen for the running simulations are in the con-
text of a Planck 2015 cosmology; the maximum-likelihood values
are computed from the Markov chains which includes 𝛼𝑠 as a free
cosmological parameter in the analysis. This results in slight differ-
ences to the quoted values of the other cosmological parameters in
Section 2.2 (a table of all of the parameter values for each cosmology
can be found in Stafford et al. 2020b). The values chosen for 𝛼𝑠 are
discussed in detail in Stafford et al. (2020a), but in summary repre-
sent the ±2𝜎 values of the posterior distribution extracted from the
Planck 2015 Markov chains8 (Planck Collaboration et al. 2014).
These two cosmological models with a running scalar spectral

index were chosen in Stafford et al. (2020a), prior to the release
of the Planck 2018 cosmological parameter constraints (Planck
Collaboration et al. 2020). The updated CMB constraints on 𝛼𝑠
are tightened somewhat to 𝛼𝑠 = −0.0045 ± 0.0067 (68% CL
TT,TE,EE+lowE+lensing) making the posterior distribution for 𝛼𝑠
used in Stafford et al. (2020a) slightly out of date. However, it is
worth noting that, even with the updated CMB constraints from the
Planck team, a mildly negative value for the running of the spec-
tral index is not ruled out (see the discussion in section 7.2.1 in
Planck Collaboration et al. 2020). Furthermore, updated constraints
from the Lyman-𝛼 forest find a ≈3𝜎 detection for a negative 𝛼𝑠 with
𝛼𝑠 = −0.010±0.003 (Palanque-Delabrouille et al. 2020)9. Therefore,
the values we simulate are still compatible with current observations,
even if they lie on the more extreme end of current constraints. Fur-
thermore, as discussed later on in the paper in the context of warm
dark matter models, this work seeks to answer the question whether
cosmic shear can be used as a complementary probe to place in-
dependent constraints on these additional cosmological parameters
(𝛼𝑠 , 𝑀WDM, 𝜎/𝑚).

7 Although in the ΛCDM model 𝛼𝑠 is assumed to be zero, virtually all
models of inflation predict some level of scale dependence for 𝑛𝑠 . However,
the simplest single field slow-roll inflation models predict that this scale-
dependence should only be of the order 10−3 (Kosowsky & Turner 1995).
8 http://pla.esac.esa.int/pla/#home
9 Note, however, that Palanque-Delabrouille et al. (2020) marginalise over
neutrino mass at the same time as 𝛼𝑠 , whereas the Planck analysis fixed Σ𝑀a

to 0.06 eV when constraining 𝛼𝑠 .

2.1.2 Warm dark matter

Another assumption of the standard model of cosmology is that dark
matter decoupled from the primordial plasma after it became non-
relativistic. This results in negligible thermal velocities at early times
(hence “cold” dark matter) and would be expected if dark matter was
composed of particles with masses in the GeV range (or larger), such
as the currently favoured candidate, the WIMP (Weakly Interacting
Massive Particle). If, however, dark matter is made up of lighter
particles with masses in the keV range, such as thermal relic sterile
neutrinos, the dark matter particles decouple whilst still relativistic.
This type of model is referred to as a thermal relic warm dark matter
(WDM)model. The resulting larger thermal velocities that these dark
matter particles have (compared to CDM) at early times allows them
to free-stream out of density perturbations. The free-streaming of
dark matter particles works to suppress the growth of structure on
small scales (Bond & Szalay 1983; Bardeen et al. 1986).
The suppression of small-scale density perturbations due to the

thermal velocity associated with the dark matter particles leads to a
characteristic cut-off in the WDM power spectrum below a 𝑘−mode
corresponding to the free-streaming scale. In this work we model the
suppression of the initial linear matter power spectrum as a trans-
fer function relative to the corresponding cold dark matter power
spectrum:

𝑃WDM (𝑘) = 𝑇2WDM (𝑘)𝑃CDM (𝑘). (3)

We compute 𝑇WDM using the fitting formula developed in Bode
et al. (2001):

𝑇WDM (𝑘) =
[
1 + (𝛼𝑘)2a

]−5/a
, (4)

where a is a fitting constant and 𝛼 dictates the scale of the cut-off
in the power spectrum, with this being dependent on the mass of
the thermal relic particle. We follow Viel et al. (2005), adopting a
= 1.12 and (assuming the WDM is composed of thermal relics) and
computing 𝛼 as:

𝛼 = 0.049
(
𝑀WDM
1keV

)−1.11 (
ΩWDM
0.25

)0.11 (
ℎ

0.7

)1.22
Mpc ℎ−1, (5)

where 𝑀WDM corresponds to the mass of theWDM particle,ΩWDM
is the present-day density of WDM 10 in units of the critical density
and ℎ is the reduced Hubble’s constant.
It is evident from equation 5 that for lighter WDM particles 𝛼

increases, pushing the scale of the cut-off in the matter power spec-
trum to smaller 𝑘−modes (larger physical scales). In this study we
examine 𝑀WDM = (0.5, 2.5, 5.0) keV. Our choice for the parameter
values investigated in this study aims to bracket the current obser-
vational constraints placed on the mass of a WDM particle from
different probes such as the Lyman-𝛼 forest (Viel et al. 2013; Iršič
et al. 2017), the Milky-Way’s satellite population (Lovell et al. 2014;
Kennedy et al. 2014; Jethwa et al. 2018; Nadler et al. 2019; Nadler
et al. 2020) and time-delay measurements of strongly gravitationally
lensed quasars (Hsueh et al. 2019; Gilman et al. 2019). Although the
0.5 keV model is perhaps currently in tension with constraints from
the previous observations, we examine it here to see if cosmic shear,
as an independent test with very different systematics compared to
previous methods, can also rule out such a model.

10 We assume all of the dark matter is in the form of WDM and so ΩWDM =

ΩCDM.

MNRAS 000, 1–18 (2015)
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2.1.3 Self-interacting dark matter

In terms of the possible interactions that dark matter particles can
experience, the standard model of cosmology adopts the simplest as-
sumption that dark matter interacts only via gravity and is therefore
‘collisionless’. The final extension that we investigate is a relaxation
of this assumption, allowing the dark matter particles to have strong
self-interactions. SIDM was proposed to alleviate the ‘cusp-core
problem’ (Flores & Primack 1994) by Spergel & Steinhardt (2000)
and has indeed been shown in the literature to produce strong cores
inside dark matter haloes and can have particularly large effects on
satellite subhaloes, strongly reducing their masses (see e.g. Peñar-
rubia et al. 2010; Vogelsberger et al. 2012; Dooley et al. 2016). We
explore how these effects translate through to the non-linear matter
power spectrum.
To study the effect of strong self-interactionswe use a version of the
GADGET3N-body code (discussed in Section 2.2)whichwasmodified
in Robertson et al. (2019) to include dark matter self-interactions,
which are assumed to be elastic. The additional parameter this adds to
the standard 6 free parameters of the ΛCDMmodel is (𝜎/𝑚), which
is the cross-section for interaction of dark matter particles. In this
study the values which we explore are (𝜎/𝑚) = (0.1, 1.0, 10.0) cm2
g−1. Again, our choices for the values adopted for this cosmological
parameter are guided by the current observational constraints. In the
case of the self-interaction cross-section, these constraints are placed
by probes such as perturbations in strong lensing arcs (Meneghetti
et al. 2001; Robertson et al. 2019), dark matter-galaxy off-sets in
colliding galaxy clusters (Randall et al. 2008; Kahlhoefer et al. 2015;
Harvey et al. 2015; Kim et al. 2017; Robertson et al. 2017; Wittman
et al. 2018), cluster shapes (Miralda-Escude 2002; Peter et al. 2013)
group shapes (Sagunski et al. 2021) and also from subhalo evapo-
ration arguments (Gnedin & Ostriker 2001). Furthermore, Banerjee
et al. (2020) showed that constraints of the order 𝜎/𝑚 <∼ 2 cm

2 g−1
can be placed on the cross-section for self interaction when combin-
ing observations of the distribution of subhaloes and weak lensing
measured density profiles.
The largest cross-section we examine is somewhat in tension with

some of the observations listed here, but it is worth noting that these
are primarily focused on large scales (galaxy clusters). There is ev-
idence to suggest that SIDM models with cross-sections as high as
50 cm2 g−1 are viable when using constraints coming from dwarf
galaxies (Elbert et al. 2015; Correa 2021). As our focus is on small
scales, the range of cross-sections we explore is therefore plausible
given current constraints. Note, although the simulation code devel-
oped by Robertson et al. (2019) has the functionality for scattering
events to be both angular and velocity dependent, for simplicity we
focus on the case where scattering events are velocity-independent
and isotropic.

2.2 Simulations

The simulations used in this study are those first introduced in
Stafford et al. (2020b). All of the simulations follow dissipation-
less physics only, meaning they follow either just the gravitational
evolution (for CDM, WDM, and the running spectral index models)
or the gravitational and self-scattering (SIDM) evolution. The impact
of physical processes associated with the baryonic component (i.e.,
radiative cooling, star formation, feedback processes) is not included
but is discussed further in Section 5.
The simulations are run with the GADGET3 code (last described in

Springel 2005). Each simulation is 25 comoving ℎ−1Mpc on a side
and contains 10243 dark matter particles. We adopt a fixed physical

gravitational softening length of 250 ℎ−1 pc at 𝑧 ≤ 3, with this being
a fixed comoving length at higher redshifts. The particle mass for
all of the simulations, with the exception of the two with a running
spectral index, is 𝑚DM = 1.266 × 106 M� ℎ−1. For the two ‘run-
ning’ simulations, the particle mass is slightly different, owing to the
slightly different values adopted forΩm and ℎ (see table 1 in Stafford
et al. 2020b). Alongside these main simulations, we also use a sec-
ondary suite of simulations of varying box size and resolution. These
include a suite of simulations which are 400 comoving ℎ−1Mpc on
a side, as well as a suite which are 100 comoving ℎ−1Mpc on a side.
Both suites contain 10243 collisionless particles. Note, however, that
we only run the cosmologies with a running scalar spectral index (as
well as the reference ΛCDM cosmology) in these larger volumes, as
they are required for the process of creating a spliced power spectrum
(see Section 2.3.1).
The initial conditions (ICs) for the simulations are generated us-

ing a modified version of the N-GenIC11 code (Springel et al. 2005)
whichwasmodified to include second-order Lagrangian Perturbation
Theory corrections. The ICs are generated at a starting redshift of 𝑧
= 127 with each simulation being initialised with the same random
phases. The input linear theory matter power spectrum and trans-
fer functions are computed with the Boltzmann code CAMB (Lewis
et al. 2000, August 2018 version). The initial conditions and the
background expansion rate in the simulations are computed assum-
ing the Planck 2015 maximum-likelihood cosmological parameters
(Planck Collaboration et al. 2014) (𝐻0 = 67.31 km s−1 Mpc−1;
ΩDM = 0.264; Ωb = 0.049; 𝑛𝑠 = 0.966; 𝜎8 = 0.830; Σ𝑀a = 0.06
eV), with the exception of the two running simulations (as explained
above).
Note that we use a version of the GADGET3 code (see McCarthy

et al. 2018) that includes the impact of massive neutrinos on the
expansion rate and the growth of fluctuations (i.e., accounts for their
free streaming), using the semi-linear algorithm of Ali-Haïmoud &
Bird (2013). As the simulations employed here adopt the minimum
allowed neutrino mass (Σ𝑀a = 0.06 eV), consistent with what is
assumed in the Planck analysis, their incorporation will not have
important consequences for the present study, but we include them
for consistency.

2.3 Matter power spectra

In this study we probe the theoretical cosmic shear power spectrum
over a large range of multipoles/angular scales. This requires that we
have a model for the non-linear matter power spectrum which spans
a large range of wavenumbers/physical scales. However, the high-
resolution 25 ℎ−1Mpc simulations thatwe use to probe the non-linear
effects only have a 𝑘-range spanning from ≈ 0.25 ℎMpc−1 to 257.36
ℎMpc−1. While the simulations extend to large enough 𝑘 (i.e., small
scales) for upcoming lensing surveys, they are clearly too small to
capture all of the relevant structure on large scales. Even though our
interest is primarily focused on small scales, we nevertheless want
to construct realistic synthetic cosmic shear observations. (Further-
more, as we will show, the running of scalar spectral index models
have important contributions from large scales.) We thus require a
way of modelling the non-linear matter power spectrum over a wide
range of scales.

11 https://github.com/sbird/S-GenIC

MNRAS 000, 1–18 (2015)
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2.3.1 Method for constructing matter power spectra

In order to model the non-linear matter power spectrum over a wide
range of wavenumbers, we combine our direct simulation measure-
ments with predictions from Halofit (Smith et al. 2003; Takahashi
et al. 2012) on larger scales. Briefly, the Halofit algorithm provides
an empirical correction for scaling the linear power spectrum (e.g.,
from a Boltzmann code) for a given cosmology to the non-linear
power spectrum. The empirical corrections were derived from fits
to a large suite of CDM-based cosmological (N-body) simulations.
We use the Boltzmann code CAMB to compute the Halofit predic-
tion at a given redshift. This provides us with the fiducial non-linear
ΛCDM power spectrum. To construct a full power spectrum for each
of our extensions toΛCDM,we use the ratios of the non-linear matter
power spectra extracted directly from the simulations (with respect to
our ΛCDM case) as a multiplicative ‘boost factor’ for the non-linear
Halofit ΛCDM prediction via:

𝑃𝐶 (𝑘, 𝑧) = 𝑃Halofit
ΛCDM (𝑘, 𝑧)𝑅𝐶 (𝑘, 𝑧), (6)

where 𝑃𝐶 (𝑘, 𝑧) is the non-linear matter power spectrum in a given
cosmological extension, and 𝑅𝐶 (𝑘, 𝑧) is the constructed ratio (boost
factor) for a given cosmology.
This approach allows us to combine multiple simulations of vary-

ing box size or resolution (by combining their ratios), following a
similar vein to the power spectrum splicing in previous Lyman-alpha
forest work (e.g., Palanque-Delabrouille et al. 2015). The combined
ratios can then be used to seamlessly scale the power spectra de-
rived on very large scales (e.g., via linear theory, perturbation theory,
Halofit, etc.) via equation 6 to produce an absolute power spectrum
for a cosmological model.
Note that previous studies have shown that cosmological simula-

tions which do not simulate the smaller 𝑘−modes (larger physical
scales) do not accurately represent the intermediate 𝑘−modes sam-
pled in the cosmological volume (see e.g. Power & Knebe 2006;
Heitmann et al. 2010; Klypin & Prada 2018; Euclid Collaboration
et al. 2019), making it difficult to combine the absolute matter power
spectra from simulations of different box sizes. This motivates the
use of combining ratios of power spectra rather than splicing the
absolute power spectra themselves. We have explicitly tested how
sensitive the ratio of the different power spectra are to resolution as
well as box size effects (see Fig. A1 in Appendix A), concluding
that they are more robust to such effects than are the absolute power
spectra.
To explain howwe construct the non-linear matter power spectrum

in a bit more detail, firstly, we compute the matter power spectra for
the different simulations using GENPK12 (Bird 2017). We then re-bin
the matter power spectra to have 10 𝑘-modes per bin (correspond-
ing roughly to rebinning the power spectra in logarithmic bins of
width 0.0143 dex), in order to smooth out some of the associated
noise. We compute the mean power in each bin, as well as the mean
wavenumber. The ratios of the power spectrum for each cosmological
extension with respect to theΛCDM result are then computed. In the
case of the SIDM andWDMmodels, all six of these simulations have
ratios which tend to 1 within the simulated volume (i.e., the physical
effects of these modifications are confined to small scales), as such
we simply extrapolate these ratios to smaller 𝑘-values (larger physi-
cal scales) assuming they are fixed at unity over the entire range. In
the case of the two simulations which have a running scalar spectral
index, the ratios of these power spectra do not tend to unity within
the high-resolution 25 ℎ−1Mpc boxes, as such we need to simulate

12 https://github.com/sbird/GenPK

the ratio over a wider 𝑘-range. To do this we use two further sets of
simulations of size 100 ℎ−1Mpc and 400 ℎ−1Mpc, each with 10243
dark matter particles, to compute the ratio of these models with re-
spect to a correspondingΛCDM result. As a result, we can accurately
probe the non-linear matter power spectrum in these simulations up
to approximately linear scales where we can then make use of the
theoretical prediction from Halofit. The reason we do not use the
Halofit prediction over the entire 𝑘-range for the simulations with
running is because it does not tend to reproduce the effects we see in
the running simulations on non-linear scales (as shown by the dotted
line in Fig. A1), discussed in Stafford et al. (2020a) (see also Smith
& Angulo 2019).
With a combined ratio spanning the entire desired 𝑘-range for each

cosmological model, we fit a cubic spline to the the data, which is
smoothed with a 3rd order Savitsky-Golay filter (Savitzky & Golay
1964) over the nearest 51 wavenumbers. These two steps are done
to ensure a smooth continuous function describing the ratio over
the entire 𝑘-range. We repeat this process at each redshift for which
we have a simulation snapshot. Once we have the ratio for each
cosmology at each redshift relative to the ΛCDM prediction, we
use it as a multiplicative boost factor to a ΛCDM matter power
spectrum (at the corresponding redshift) to obtain the absolute power
spectrum for each cosmology.Note thatwe have simulation snapshots
at 𝑧 = {0.0, 0.125, 0.25, 0.375, 0.5, 0.75, 1.0} for which we compute
the non-linear total matter power spectrum. When we compute our
shear power spectra described in Section 3.1, we use a cubic spline
to interpolate between both redshift and 𝑘−modes. We set the power
to zero for 𝑘−modes outside of the range sampled by our constructed
matter power spectrum.

2.3.2 Resulting non-linear matter power spectra

The resultant constructed matter power spectra can be seen in Fig. 1,
where we show the absolute power spectra at redshift 𝑧 = 0 in the top
panel, and the redshift evolution of the ratios computed with respect
to theΛCDMresult in the bottom three panels.We only show here the
results up to a maximum redshift of 𝑧 = 1.0 as this is the maximum
source redshift we use in our weak lensing calculations (we discuss
our choice of a maximum source redshift of 𝑧 = 1.0 in Section 4.1).
A feature common to most of the cosmological extensions exam-

ined here is the suppression of small-scale power at 𝑘 > 10 ℎMpc−1.
A cosmologicalmodelwith a negatively running scalar spectral index
has less power on small scales due to a dampening effect on the ini-
tial density perturbations generated by inflation. WDM cosmologies
have small-scale density perturbations erased due to free streaming.
Finally, SIDM cosmologies have small-scale clustering erased at late
times due to the self-interactions creating cores (and generally eras-
ing structure) in otherwise high-density dark matter haloes. In detail,
however, differences between the three models do exist. For example,
whereas the suppression in thematter power spectrum decreases with
decreasing redshift for WDM and a negative value for 𝛼𝑠 , the sup-
pression increases with time in a SIDM cosmology. The suppression
reduces with time for the other two cosmological models due tomode
mixing transferring power from large scales to smaller scales. A sim-
ilar result to this was seen in Stafford et al. (2020a) for the case of a
running spectral index and in Viel et al. (2012) for the case of WDM.
However, in the case of SIDM the effect seen in the non-linear matter
power spectrum of the suppression becoming larger with decreasing
redshift, which is a feature unique to SIDM, occurs due to the higher
virial velocities present at late times. This causes scattering events to
be more efficient at redistributing the mass inside the inner regions
of haloes. Furthermore, there is a cumulative number of scattering
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Figure 1. Top: the constructed non-linear matter power spectrum for each
cosmological extension indicated with varying colours, computed at 𝑧 =
0. Bottom (three panels): the matter power spectrum of each cosmological
extension normalised to the ΛCDM case. Redshifts 0, 0.5 and 1.0, respec-
tively, are shown, demonstrating the redshift evolution of the ratios for each
cosmological model. All models, with the exception of a cosmology with a
positively running scalar spectral index, result in some level of suppression
of the non-linear matter power spectrum compared to the ΛCDM prediction
on small physical scales. This suppression ranges from around 5% in the case
of the less extreme WDM cosmology to ≈ 60% for the more extreme WDM
cosmology for the smallest scales examined here at the present day.

events which occur with decreasing redshift. These combined effects
result in the suppression in the matter power spectrum extending
to smaller 𝑘-modes. The differences seen in the redshift evolution
of the matter power spectrum are important as measurements at a
single fixed redshift could result in different cosmological models
having very similar effects. See, for example, the 𝑧 = 0.5 panel in
Fig. 1 where the 𝑀WDM = 5.0 keV and the 𝜎/𝑚 = 0.1 cm2 g−1 are
predicted to have an almost indistinguishable effect on the non-linear
matter power spectrum. However, at earlier and later redshifts the
predictions for their suppression of the matter power spectrum are
noticeably different.
The model with a positive running scalar spectral index is the only

model to predict an enhancement in power on these same scales,
except for the slight increase in power seen in the more extreme
SIDM models on 𝑘−scales ≈ 25 ℎMpc−1. The increase in power on
small-scales in the SIDMmodels is due to the re-distribution of dark
matter in the central regions of dark matter haloes. In particular, the

enhancement mainly occurs due to the outward scattering of dark
matter particles from the very central regions to somewhat larger
radii (see figure 5 in Stafford et al. 2020b, for example). This outer
radii, where particles tend to gather in stable orbits corresponds
approximately to the radius where we expect each particle to have
interacted at least once per Hubble time (see section 5.3 of Rocha
et al. 2013, for example, for a discussion on this).
One obvious feature of the two cosmologies with a running scalar

spectral index is the cross-over regions seen in the ratio panels (in
the range −2 ≤ log10 (𝑘 [ℎMpc−1]) ≤ 1). The reason these cross-
over regions exist is because of differences in the amplitude of the
primordial matter power spectrum, 𝐴𝑠 , which is larger in the case of
the positive running cosmology and smaller in the negative running
case with respect to 𝐴𝑠 for the fiducial ΛCDM case. (Note that
𝐴𝑠 varies between the models in order to retain a good match to the
PlanckCMBangular power spectrum, see discussion in Stafford et al.
2020a.) This amplitude difference produces an additional offset with
respect to the ΛCDM power spectrum on top of the the resulting
increase (decrease) in power on large and small scales due to the
positive (negative) running of the spectral index.

3 TOMOGRAPHIC WEAK LENSING

In this section we describe our methodology for computing cos-
mic shear power spectra from the non-linear matter power spectra
described above and how we generate noisy realisations (synthetic
observations) of the cosmic shear power spectra.

3.1 Theory

Weak lensing describes the deflection of light rays due to the presence
of large-scale structure in the Universe, which results in slight corre-
lated distortions in the observed shapes of galaxies (Blandford et al.
1991; Miralda-Escude 1991; Kaiser 1992). The lensing of galaxies
leads to two effects: the dilation or magnification of an image which
can be described by the convergence, ^, and the stretching (shearing)
of an image, 𝛾1,2. In this study we focus on the shears of galaxies
which can be used to probe the projected mass distribution via the
galaxy shape correlation functions. Additional information on the
growth of structure over cosmic time can be obtained if one has
redshift measurements of the background galaxies. In this case, the
source distribution can be discretized into redshift (or tomographic)
bins, allowing one to probe the three-dimensional matter distribution
(see Kilbinger 2015 for a recent review).
The 2-point correlation function of galaxy shapes, and its Fourier

analogue the power spectrum, are directly linked to the underlying
matter distribution and its power spectrum integrated along the line
of sight. We compute the cosmic shear power spectrum via:

𝑃
𝛾

𝑖 𝑗
(ℓ) =

∫ 𝜒H

0
𝑑𝜒l (1 + 𝑧l)2𝑊𝑖 (𝜒l)𝑊 𝑗 (𝜒l)𝑃3D

(
𝑘 =

ℓ

𝜒l
, 𝜒l

)
, (7)

where 𝜒l is the comoving distance to the lens at redshift 𝑧l, 𝑃3D is
the non-linear matter power spectrum, and𝑊𝑖 and𝑊 𝑗 are the lensing
efficiencies in the tomographic bins 𝑖 and 𝑗 , defined as:

𝑊𝑖, 𝑗 (𝑧𝑙) =
3
2
Ωm

(
𝐻0
𝑐

)2 ∫ 𝑧max

𝑧l

𝜒l − 𝜒s
𝜒s

𝑛𝑖, 𝑗 (𝑧s)𝑑𝑧s. (8)

Here 𝜒s corresponds to the comoving distance to the source at
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redshift 𝑧s and 𝑛𝑖 is the normalized homogeneous source distribution
in tomographic bin 𝑖 given by:

𝑛𝑖 (𝑧) =
𝑛(𝑧)∫ 𝑧max

0 𝑛(𝑧)𝑑𝑧
, (9)

It is worth mentioning that equation 7 is predicated upon some im-
portant assumptions. These include the Limber approximation (Lim-
ber 1953; Kaiser 1992), which only includes modes in the plane
of the sky, neglecting those between structures at different epochs in
the line of sight integration. The small-angle and flat-sky approxima-
tions have also been adopted, which allows one to replace a spherical
harmonics transform with a Fourier transform (Hu 1999). Other as-
sumptions which are embedded inside the lensing efficiency 𝑊𝑖, 𝑗

(see equation 8) is that of a homogeneous galaxy distribution, which
ignores source-source clustering (Schneider et al. 2002) as well as
source-lens clustering (Bernardeau 1998; Hamana et al. 2002). Spa-
tial flatness has also been assumed in equation 7.
Although the previous assumptions may introduce some level of

systematic error in the calculation of the shear power spectrum, we
neglect them here owing to the fact that, firstly, they will be common
to each cosmology and should therefore be less important when we
focus on the ratios of the cosmic shear power spectra, and, secondly,
they mainly affect the largest angular scales (ℓ < 10) (see for example
Schmidt 2008; Giannantonio et al. 2012; Kilbinger et al. 2017) which
is not our focus.
The uncertainty in the shear power spectrum can be expressed as

(Kaiser 1998; Hu 1999; Euclid Collaboration et al. 2020a):

Δ𝑃
𝛾

𝑖 𝑗
(ℓ) =

√︄
2

(2ℓ + 1) Δℓ 𝑓sky

𝑃
𝛾

𝑖 𝑗
(ℓ) + 𝛿𝑖 𝑗

〈
𝛾2int

〉
𝑛𝑖

 , (10)

where Δℓ is the multipole bandwidth, 𝑓sky is the fraction of sky

surveyed, 𝛿𝑖 𝑗 is the Kronecker delta symbol,
〈
𝛾2int

〉
is the shape noise,

representing the variance of observed galaxy ellipticities (which we
take to have a value of 0.261, motivated by Gatti et al. 2021), and
𝑛𝑖 is the surface density of source galaxies in the tomographic bin,
expressed in steradians−1. The term under the square root accounts
for the limited number of available independent ℓ modes. The first
term in the square brackets corresponds to the cosmic variance and
the second term is a Poisson noise term. In addition to introducing
scatter in the cosmic shear power spectrum (via the Poisson noise
term), the shape noise also contributes to an additive shot noise term
that biases the auto power spectrumbut not the cross-power spectrum,
as the shot noise in different tomographic bins is uncorrelated. Thus,
the shot noise must be subtracted from the estimated auto power
spectra.
As written in equation 10 (see also Euclid Collaboration et al.

2020a, eqns. 118 and 125), it appears that the Poisson noise only
applies to the uncertainty in the auto-correlation power spectrum
and not the uncertainty in the cross-correlation power spectrum, in
analogy to the way shot noise contributes to the measured power
spectrum but not the cross-spectrum. While the Poisson noise is
uncorrelated between tomographic bins and therefore does not bias
the cross-spectra, we find that there is a significant contribution to
the uncertainty in the measured cross-spectra due to Poisson noise.
Furthermore, equation 10 only provides an estimate of the Gaussian
errors; i.e., the diagonal elements of the covariance matrix, but in
principle there could be significant non-Gaussian contributions. For
these reasons, instead of using the standard analytic error estimate in
equation 10, we instead generate synthetic weak lensing observations
using the FLASK software package, as described below.

We note that cosmic variance, shape noise, and Poisson errors are
not the only sources of uncertainty for the cosmic shear power spec-
trum. One of the major astrophysical sources of uncertainty stems
from the intrinsic alignment of galaxy shapes. This stems from tidal
interactions during the formation period of nearby galaxies which
induces an intrinsically correlated orientation of the galaxies’ shapes
(Joachimi et al. 2015; Kiessling et al. 2015; Kirk et al. 2015) which
works to dilute the cosmological signal in the two-point correlation
function of these shapes. Additionally, another important source of
error stems from photometric redshifts being used for source galax-
ies. This leads to some galaxies being ascribed the wrong redshift and
blurring the edges of tomographic bins. A comprehensive discussion
on the systematic errors affecting weak lensing surveys can also be
found in Mandelbaum (2018). For simplicity we ignore these effects
in the present study.

3.2 Synthetic cosmic shear observations

For our cosmic shear analysis there are several choices one needs to
make to specify the setup. For example, as seen in equation 7, the
shear power spectrumwill directly depend on the redshift distribution
of the source galaxies. It will also depend on how many tomographic
bins are used in the analysis. Furthermore, the associated uncertainty
on the shear power spectrum will depend on the density of source
galaxies as well as on the survey sky coverage.
In this study we are interested in whether or not future Stage-IV

weak lensing surveys such as Euclid, LSST, and NGRST would be
able to rule out, or help place constraints on, the different cosmo-
logical extensions examined in this study. For our fiducial results we
compute the shear auto- and cross-power spectra for a Euclid-like
setup, however, the survey parameters of an LSST-like setup would
be very similar, and so the results we present below would not differ
much (we have explicitly verified this). We discuss the differences
with respect to an NGRST setup in Section 4.1.
When constructing the Euclid-like setup, we follow as closely

as possible that described in Euclid Collaboration et al. (2020a). In
particular, the source galaxy distribution is defined via:

𝑛(𝑧) = 𝑧𝛼 exp

(
−

[
𝑧

𝑧0

]𝛽)
, (11)

where 𝛼, 𝛽 and 𝑧0 are survey specific parameters which describe the
source distribution.We adopt values of 2, 1.5 and 0.636, respectively,
to be similar to the source distribution expected for theEuclid survey.
The planned analysis of the Euclid survey splits the galaxy

distribution up into 10 tomographic bins with a redshift range of
0.001 ≤ 𝑧𝑠 ≤ 2.5. However, in this study we focus on redshifts ≤ 1,
which approximately corresponds to the first 6 tomographic bins in
the Euclid setup. As such, we split our galaxy distribution up into
6 tomographic bins between 0.001 ≤ 𝑧𝑠 ≤ 1.0. The edges of each
tomographic bin are 𝑧𝑖 = {0.001, 0.414, 0.554, 0.669, 0.777, 0.885,
1.0} and are defined such that there is an equal number of galaxies
in each bin, essentially fixing the associated shot noise in each bin.
We choose a maximum source redshift of 1 as, for a fixed range of
angular scales, higher redshift measurements correspond to larger
physical scales.13 As the extensions we explore mostly affect small
physical scales, we do not expect them to be easily distinguishable
from ΛCDM at high redshifts (the exception to this are the models

13 Note, the minimum source redshift of 0.001 was chosen to coincide with
the minimum redshift used in Euclid Collaboration et al. (2020a).
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Table 1.The shift parameters used to define the lognormal realisations of each
shear field. The columns from left to right are the tomographic bin number,
the mean redshift of the tomographic bin, the calculated shift parameter for
that bin.

𝑖 𝑧mean _

1 0.3003 0.0048
2 0.4874 0.0099
3 0.6126 0.0141
4 0.7233 0.0181
5 0.8307 0.0224
6 0.9417 0.0272

which have a running of the scalar spectral index, as we discuss be-
low). Specifically, we compute the cosmic shear power spectrum up
to an ℓmax = 4, 000, which lies close to the ‘optimistic’ case for the
Euclid survey of ℓmax = 5000 (with their ‘pessimistic’ case being
ℓmax=1500, if one does not include non-Gaussian contributions to
the covariance matrix). This ℓmax corresponds to angular scales of
around 0.44 arcmin, or 𝑘 [ℎMpc−1] = 2.18, at 𝑧 = 1.
Note that, as surveys such as Euclid and LSST will make use of

photometric redshifts (see e.g. Euclid Collaboration et al. 2020b),
one needs to account for the associated uncertainty by convolving
the number density distribution in equation 9 with a probability
distribution function accounting for uncertainties in the photometric
redshifts, along with accounting for catastrophic outliers (see for
example equation 115 in Euclid Collaboration et al. 2020a). These
are galaxies which have a severely incorrect measurement of their
redshift and have therefore been placed in the wrong tomographic
bin. We ignore this effect in this paper, however.
To generate the synthetic weak lensing observations using the cos-

mic shear power spectra computed in Section 3.1 and the details
of the Euclid survey choices above, we use the publicly available
software package FLASK14 (Xavier et al. 2016). FLASK can generate
lognormal (or Gaussian) realisations of correlated fields on spherical
shells. We make use of its ability to generate weak lensing shear
fields. Each field can be generated tomographically, with the sta-
tistical properties of these fields (including their cross-correlations)
being defined via input angular power spectra (where one provides
as input the auto- and cross-spectra that they want maps created for).
We provide as input the theoretical cosmic shear power spectra as
computed in equation 7, which in the flat-sky approximation is equiv-
alent to the convergence power spectrum (Hu 2000; Kilbinger et al.
2017; Bartelmann & Schneider 2001). We use FLASK to produce
many realisations of our theoretical shear power spectra, allowing
us to evaluate the full covariance matrix in the error analysis, rather
than just using the Gaussian errors computed using equation 10, and
to evaluate the potential Poisson noise contribution to cross-power
spectra between tomographic bins. Note that the measured power
spectra computed from the FLASK maps will contain a shot noise
contribution. Therefore, when computing the full covariance matrix
we subtract this shot noise from the auto-correlation power spectra.
In order to define the log-normality of the shear field, one needs

to specify a shift parameter. We compute this shift parameter (_)
following Hilbert et al. (2011) who used the Millennium Simulation
(Springel 2005) to produce synthetic convergence and shear maps.
From these maps they measure the convergence distribution and find
that it is best fit with a zero-mean shifted log-normal distribution.

14 https://github.com/hsxavier/flask

They do this at multiple redshifts and provide an empirical formula,
which we use here, that captures the redshift evolution of the shift
parameter _ (^0 in Hilbert et al. 2011)

_(𝑧) = 0.008𝑧 + 0.029𝑧2 − 0.0079𝑧3 + 0.00065𝑧4. (12)

We substitute in the mean redshift of each tomographic bin to calcu-
late the associated shift parameter for that field. The values calculated
can be found in Table 1.
We want FLASK to output shear maps which will also capture

the noise associated with measurements of the cosmic shear power
spectrum (see Section 3.1). Therefore, we also supply FLASK with
an angular selection function, such that the map will be masked to
reproduce a survey’s specific 𝑓sky, as well as providing a redshift
selection function so that the number of galaxies in a tomographic
bin is reproduced. One also needs to supply the software with a
value for the ellipticity dispersion of galaxy shapes,

〈
𝛾2int

〉
, in order

to incorporate shape noise into the shear maps created. As already
noted, we adopt

〈
𝛾2int

〉
= 0.261.

The maps output by FLASK, which are output in HEALPix15 for-
mat, contain the mean source ellipticity in each pixel, calculated via:

𝜖 ( 𝑗) = 𝑔( 𝑗) + 𝜖𝑠√︁
𝑁gal

, (13)

where 𝑔( 𝑗) is the reduced shear associated with pixel 𝑗 , 𝜖s is a value
for the intrinsic ellipticity associated with galaxy shapes randomly
sampled from a zero-mean Gaussian distribution with width equal
to

〈
𝛾2int

〉
, and 𝑁gal is the number of galaxies that fall within that

pixel. We produce 200 map realisations of each tomographic power
spectrum in this way. Following this we compute the auto- and cross-
correlation power spectra of these maps using the PYTHON package
HEALPY16. We use these power spectra to evaluate the covariance
matrix in 14 multipole bins in the range 10 ≤ ℓ ≤ 4, 000, which we
calculate as:

cov
[
𝑃
𝛾

𝑖 𝑗
(ℓ), 𝑃𝛾

𝑖′ 𝑗′ (ℓ
′)
]
=〈(

𝑃
𝛾

𝑖 𝑗
(ℓ) −

〈
𝑃
𝛾

𝑖 𝑗
(ℓ)

〉) (
𝑃
𝛾

𝑖′ 𝑗′ (ℓ
′) −

〈
𝑃
𝛾

𝑖′ 𝑗′ (ℓ
′)
〉)〉

(14)

The resultant cosmic shear auto- and cross-power spectra can be
seen in Fig. 2 for all cosmologies, alongwith the associated uncertain-
ties on the cosmic shear power spectrum, which serves to illustrate
the absolute power spectra and how the associated changes due to
the different cosmological models are generally quite subtle. The
differences in the cosmic shear power spectra are better highlighted
in Fig. 3, which shows the ratio of each auto- and cross-correlation
power spectrum with respect to the ΛCDM prediction in that same
tomographic bin. We discuss here the calculation of the error bars in
Figs. 2 and 3 and leave the scientific interpretation of these results
for Section 4.
The red error bars in Fig. 3 show the theoretical uncertainty asso-

ciated with the shear power spectrum as computed using equation 10.
The black error bars represent the diagonal elements of the covariance
matrix for aΛCDMcosmology calculated usingmultiple realisations
of each shear power spectrum as generated by FLASK. Note here that
the error bars which are shown are normalised to the ΛCDM power
spectrum in each tomographic bin, i.e., Δ𝑃𝛾

𝑖 𝑗
(ℓ)/𝑃𝛾

𝑖 𝑗
(ℓ).

It can be seen in Fig. 3 when comparing the theoretical error

15 https://healpix.sourceforge.io/
16 https://github.com/healpy/healpy
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Figure 2. The shear auto- and cross-correlation power spectra computed for each cosmological model. The source galaxy tomographic bins are distributed
between a minimum source redshift of 0.001 and a maximum source redshift of 1.0 and such that each tomographic bin has the same number density of source
galaxies. We split the distribution up into 6 tomographic bins to mimic a Euclid-like survey and plot up to ℓmax=4,000, which lies between the pessimistic
and optimistic case for the Euclid survey. Here the error bars show the standard deviation of the realisations of each power spectrum evaluated using the
FLASK package (see text). In general, the deviations to ΛCDM case are subtle and require a quantitative evaluation of the signal-to-noise ratio.

bars shown in red to the black error bars extracted from the co-
variance matrix computed with the assistance of FLASK, that the
errors are in excellent agreement (as one would expect) for the auto-
correlation power spectra. There is some disagreement at low mul-
tipoles, which stems from cosmic variance issues associated with
the maps.17 However, importantly, this agreement does not hold for

17 We tested whether the error bars at small multipole were brought into
better agreement if one created full sky realisations of the power spectra
using FLASK rather than a masked version and found that this was indeed

the cross-correlation power spectra, with significant disagreements
at large multipoles (small angular scales). Specifically, the analytic
calculation in equation 10 ignores the effects of Poisson noise on
uncertainty in the cross-spectrum, but we find there is always a non-
negligible Poisson error.
In Appendix B we use realisations of pure shape noise fields

generated with FLASK to derive a more accurate and general equation

the case. Therefore, it is likely that the masking is adding some additional
spurious noise to the signal on large angular scales.
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for incorporating the impact of shape noise (Gaussian errors only)
on the cross-spectrum, namely:

Δ𝑃
𝛾

𝑖 𝑗
(ℓ) =√︄

2
(2ℓ + 1) 𝑓sky

𝑃
𝛾

𝑖 𝑗
(ℓ) + 𝛿𝑖 𝑗

〈
𝛾2int

〉
𝑛𝑖

+
(
1 − 𝛿𝑖 𝑗

) 〈
𝛾2int

〉
√︁
2𝑛𝑖𝑛 𝑗

 . (15)

The new term (right most in the square brackets) represents the
contribution of Poisson noise to the uncertainty in the cross-power
spectrum. Note the similarity of the noise terms for the auto- and
cross-spectra, which is expected because they are caused by the same
effect: random alignments of galaxy shapes. The only difference is
that for the cross-spectrum term we allow for the possibility of differ-
ent source densities in the tomographic bins being cross-correlated,
and the extra factor of square root of 2, which is the result of having
more galaxy pairs to evaluate in the cross-spectrum compared to the
power spectrum (the error scales as the number of pairs).
Finally, we note that the black error bars plotted in Figs. 2 and 3

correspond to just the diagonal elements of the covariance matrix,
but we use the full covariancematrix when evaluating signal-to-noise
ratios in in Section 4.

3.3 Summary of theoretical cosmic shear pipeline

Here we provide a very brief summary of the steps described above
in generating cosmic shear power spectra for the different cosmo-
logical models in this study, alongside a realistic estimate of the
uncertainties.

• Compute 𝑃(𝑘) for each cosmological simulation (including box
size variations for the two 𝛼𝑠 simulations) and re-bin to smooth out
some of the initial numerical noise associated with the power spectra.

• Compute the ratio of each power spectrum with respect to a
corresponding ΛCDM simulation (of same box size and resolution).

• For cosmologies with a running spectral index, combine the
ratios computed from the 400, 100, 25 Mpc ℎ−1 box simulations
along with the Halofit prediction to a log(𝑘min) = −4. For all other
cosmologies, extrapolate 𝑅𝐶 (𝑘, 𝑧) = 1 for large scales not sampled
in the 25 Mpc ℎ−1 box. Fit a cubic spline to the constructed ratios
and smooth.

• Calculate the absolute 𝑃(𝑘) for each cosmology using the con-
structed ratio as a boost factor to modify the ΛCDM prediction
computed using Halofit (equation 6).

• Generate theoretical tomographic shear power spectra for each
cosmological model using equation 7.

• Construct multiple synthetic tomographic weak lensing shear
maps for a ΛCDM universe including galaxy shape noise using the
FLASK package. Compute 𝐶 (ℓ) for each realisation to construct a
covariance matrix for the ΛCDM prediction using equation 14.

4 RESULTS

In this section we present the main results of this work. This includes
predictions for the tomographic cosmic shear auto- and cross-power
spectra for each cosmological model, along with their respective ra-
tios with respect toΛCDM.We also explore how large the differences
in the cosmic shear power spectrum due to a change in cosmology
are compared to the expected error associated with the cosmic shear
power spectrum.

4.1 Comparisons up to ℓmax = 4, 000

We now discuss the main results of our investigation for the fiducial
Euclid-like setup, examining the cosmic shear power spectrum up
to a maximum multipole of ℓmax = 4, 000.
Examining the ratios of the various cosmological extensions with

respect to ΛCDM shown in Fig. 3, we can immediately conclude
(by eye) that all of the cosmological extensions studied here are
capable of producing some level of deviation in the cosmic shear
power spectrum compared to theΛCDMprediction over this range of
multipoles. However, in the case of WDM and SIDM, these changes
appear most noticeable for the two extremest models examined in
this study. The other models do produce differences as well, but they
are comparatively smaller and a more quantitative analysis of their
‘detectability’ is thus required.
We quantitatively characterise the constraining power of the cos-

mic shear observations via a signal-to-noise ratio (SNR), which we
evaluate as:

(𝑆/𝑁)2 =∑︁
ℓ,ℓ′≤ℓmax

( |𝑅(ℓ) − 1|) ©«
Cov[P𝛾ij (ℓ), P

𝛾

ij (ℓ
′)]

𝑃
𝛾

𝑖 𝑗
(ℓ)𝑃𝛾

𝑖 𝑗
(ℓ′)

ª®¬
−1

(
��𝑅(ℓ′) − 1��) ,

(16)

where 𝑅(ℓ) is the ratio of each cosmological extension with respect
to ΛCDM as plotted in Fig. 3. We make use of the full covariance
matrix calculated using equation 14,whichwe normalisewith respect
to the absolute power spectra themselves. We do this because we are
comparing the error bars to the ratios rather than the absolute power
spectra.
The resultant plot of the integrated SNR as a function of ℓmax can

be seen in Fig. 4. The solid curves represent the integrated SNR as a
function of scalewhen using the full covariancematrix to estimate the
uncertainties. For comparison, the dashed curves show the integrated
SNR when using only the Gaussian (diagonal elements) errors. A
legend is provided which lists the integrated SNR when summed (in
quadrature) over all tomographic bins for the full covariance matrix
case and for the diagonal errors only (the latter is in parentheses).
As expected from Fig. 3, the cosmology with a negative value

for the running of the spectral index shows strong deviations from
the ΛCDM prediction over almost the entire multipole range, with
these differences becoming larger at higher redshift. The reason for
this stems mainly due to an increase in the absolute power on these
multipoles in the later tomographic bins, as seen in Fig. 2. This causes
the relative error bars to decrease with increasing redshift resulting
in a larger SNR. When summed over all tomographic bins, a Planck-
based cosmology with a negative running of the scalar spectral index
will likely be easily distinguishable from a Planck-based ΛCDM
cosmology with a Euclid-like cosmic shear survey.
One apparent feature in the SNR for the negative running cosmol-

ogy is the plateau towards higher multipoles. The reason for this be-
havior is that the signal we see here is dominated by the region of the
power spectrum for which a negative running cosmology produces an
enhancement in power (due to the increase in 𝐴𝑠) relative to ΛCDM.
However, on the largest multipoles the ratio begins to turn over and
decrease, where it would eventually cross over theΛCDM prediction
and predict a suppression in the cosmic shear power spectra, rather
than the enhancement that we see on these scales. Therefore, the
signal, relative to the error bars, decreases over this range of scales
yielding a plateau in the integrated SNR. The same effect is also
seen, perhaps somewhat more clearly, in the cosmology with a posi-
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Figure 3. The shear auto- and cross-correlation power spectrum for each cosmological model normalised to the corresponding ΛCDM auto/cross-correlation
power spectrum. The different coloured lines represent the different cosmological modes, indicated in the legend. The red error bars show the standard theoretical
(analytic) prediction for the noise on the shear power spectra (which does not include the effects of Poisson noise on the shear cross-spectra), and the black error
bars show the noise computed using multiple realisations of each auto and cross power spectrum in a ΛCDM cosmology with the FLASK package. This plot
helps highlight the resultant changes to the cosmic shear power spectrum, particularly due to the inclusion of a running scalar spectral index as a free parameter
in the standard model. The numbers in square brackets in the top left of each panel indicate the tomographic bin number. Increasing tomographic bin number
corresponds to higher redshifts (see Table 1 for the mean redshift of each bin).

tively running scalar spectral index where the opposite is true. In this
case, there is initially a slight suppression in the cosmic shear power
spectra which flips and becomes an enhancement at high multipoles,
producing the initial increase in the SNR, followed by a plateau and
then a second increase after the ratio has crossed unity. As a result,
the positive running cosmology has an integrated SNR in the later
multipole bins exceeding 1, showing that upcoming future surveys
such as Euclid and LSST are perhaps able to put constraints on a

value for the running of the scalar spectral index that are competitive
to those from cosmic microwave background and Lyman-𝛼 forest
constraints.

Note that the SNRwould likely continue to increase if we increased
themaximum source redshift beyond the limit of 𝑧𝑠=1.0 that we adopt
here, at least for the running cosmologies. If one was to include
tomographic redshift bins beyond 𝑧s = 1.0 the relative error bars
shown in Fig. 3 would decrease (due to the increase in the cosmic
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Figure 4. The integrated signal to noise ratio (SNR) as a function of ℓmax to demonstrate how significant the deviations in the shear power spectra are for the
different cosmological models relative to ΛCDM . We plot here two variants of this statistic shown by solid and dashed lines. In the first case (solid line), the
SNR is calculated using the entire covariance matrix, whereas the dashed line only uses the diagonal elements of the covariance matrix. The total integrated
SNR, summed (in quadrature) over the tomographic bins, is shown next to the bottom left panel with the values in brackets indicating the SNR if one only uses
the diagonal elements of the covariance matrix.

shear signal); hence this would enhance the SNR seen here. The
reason we do not include these higher redshift tomographic bins in
this study is because, asmentioned, at fixed ℓmax, but increasing 𝑧s the
region of the matter power spectrum one becomes sensitive to tends
towards smaller 𝑘−modes. As such, although this would still result in
a measurable signal for the twomodels with a running spectral index,
it would not result in a measurable signal for the WDM and SIDM
cosmologies (their effects are confined to small physical scales).
However, these higher redshift tomographic bins will be included

in future weak lensing surveys, resulting in potentially increased
constraining power on 𝛼𝑠 compared to what is shown here.

For the SIDM and WDM cosmologies it appears that one needs
to probe to much smaller scales (higher multipoles) to be able to
distinguish most of the models we explored from ΛCDM. The only
exceptions are the most extreme WDM (0.5 keV) and SIDM (𝜎/𝑚 =

10 cm2 g−1) models. Our calculations suggest that a Euclid-like
survey with realistic source densities and shape noise may be able
to (marginally) distinguish these models from ΛCDM. Pushing to
higher multipoles would help in these cases as well.
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An important aspect of a Euclid-like survey is the fact that it
has a large sky coverage, meaning the cosmic variance error associ-
ated with the measurements of the cosmic shear power spectrum is
strongly reduced on all but the largest angular scales. Therefore, the
limiting factor in the ability of detecting a difference between some
of these cosmological models and ΛCDM, particularly at the upper-
end of the multipole range we analyse in this study, is a result of the
uncertainty in galaxy shapes. Thus, we have also investigated a simi-
lar tomographic setup as that expected for the NGRST survey which
instead of a large 𝑓sky (NGRST is envisioned to have 𝑓sky = 0.0485),
is expected to have a larger number density of source galaxies equal
to 𝑛𝑠 = 51 galaxies/arcmin2 compared to 𝑛𝑠 = 30 galaxies/arcmin2
for a Euclid-like (or LSST-like) setup.
For the NGRST setup we use five tomographic bins up to redshift

1.0, defining the source galaxy distribution using equation 11 (here
we adopt the parameter values: 𝛼 = 2, 𝛽 = 0.9, 𝑧0 = 0.28 in order to
closely mimic the galaxy distribution described in Eifler et al. 2020).
We find that, although the shot noise error is decreased in such a
survey setup, the increase in the cosmic variance error due to the
reduction in sky coverage compensates, resulting in no improvement
on the SNR18. Therefore, it seems that one would need both a large
𝑓sky (although potentially not as large as Euclid or LSST), and a
large number density of source galaxies, 𝑛𝑠 , to use cosmic shear to
better constrain these cosmological models without having to push
to higher multipoles.
It is apparent from the above analysis that, if it was possible to

push to higher multipoles, this could considerably increase the con-
straining power for the SIDM and WDM scenarios. However, if we
were to evaluate the uncertainties using a full covariance matrix ap-
proach this would be much more computationally expensive, as each
realisation has around 2 × 108 pixels in each tomographic map and
(𝑁T (𝑁T+1)/2) auto- and cross-correlation power spectra (where 𝑁T
is the number of tomographic bins)19. However, we can considerably
simplify the process if the Gaussian errors (in equation 15) are suf-
ficient to calculate a SNR. Comparing the solid and dashed curves
in Fig. 4, we conclude that the difference in the integrated SNRs
are fairly significant for the running cases (particularly the negative
running scenario), but not for the SIDM or WDM cases, at least over
the range of multipoles examined here. As such, below we exam-
ine if pushing to ℓmax = 20, 000 improves the SNR for the models
with WDM, SIDM and positive running scalar spectral indices, us-
ing the estimated Gaussian errors rather than a full covariance matrix
approach.

4.2 Comparisons up to ℓmax = 20, 000

We show in Fig. 5 the new integrated SNR, extended up to an 𝑙max
= 20,000, with the vertical dashed grey line in each panel showing
the previous 𝑙max. Note that we have replaced the reduced covariance

matrix term in equation 16, with simply
(
Δ𝑃

𝛾

𝑖 𝑗
/𝑃𝛾

𝑖 𝑗

)−2
, where Δ𝑃𝛾

𝑖 𝑗

is calculated using equation 15, which includes the additional Poisson
error on the cross-correlation power spectra.
Pushing to higher multipoles does indeed reveal regions of the

cosmic shear power spectrum where the differences due to changes
in cosmology are not yet completely drowned out by the associated

18 The total integrated SNRs calculated for a NGRST-like setup for each
cosmology, using the full covariance matrix are: {9.657, 1.733, 2.203, 0.481,
0.082, 1.39, 0.023, 0.009}, in the same order as that displayed in Fig. 4.
19 Note that we produce 200 unique realisations in order to evaluate the
covariance matrix.

noise. This is particularly true for the positive running cosmology
and the two SIDM cosmologies with the smallest cross-sections,
which all show a marked improvement in the total integrated SNR
when summed over tomographic bins, as shown at the bottom of
Fig. 5. However, although the total integrated SNR is now > 1 for
the less extreme SIDM cosmology of the two, the integrated SNR
never exceeds 1 in any single tomographic bin, meaning the full
tomographic information will be needed to place constraints on the
cross-section for interaction.
Note that the signal present in each tomographic bin will be some-

what sensitive to the tomographic binning strategy. For example, at
fixed source density for a given survey, the fewer tomographic bins
one has the larger the effective number density of source galaxies
in each tomographic bin. This will work to decrease the shot noise
associated with each tomographic power spectrum, thus increasing
the integrated SNR in an individual bin. The integrated SNR when
summed over all bins, though, should be a more robust quantity.
In the case of the WDM cosmologies, pushing to these higher

multipoles does not result in a significant gain in SNR, insofar as de-
tection is concerned. As explained previously, this is in part because
the suppression in the matter power spectrum in a WDM cosmology
is maximal at larger redshifts. However, the 𝑘−scales affected in a
WDM cosmology move out of range of the ℓ−modes covered in this
study at higher redshifts.
While it is clear from the above analysis that pushing to higher

multipoles in general results in increased SNRs, a potentially impor-
tant caveat is that our analysis does not take into account additional
sources of uncertainty that may be prevalent on such small angular
scales, including source deblending difficulties. This refers to the
phenomenon where sources (be them galaxies or stars) overlap on
the sky, disrupting the shear estimation of a source galaxy. This can
be accounted for by rejecting objects which are flagged as blended.
However, aswas shown in, for exampleHartlap et al. (2011) andMac-
Crann et al. (2017), this can lead to a selection bias on the source
galaxies used in the cosmic shear analysis. In particular, this selection
bias works to exclude galaxies in high density environments, which
will have a higher convergence than average, resulting in a biased
(low) two-point correlation function of galaxy shapes, particularly
on small-scales (see e.g., fig.8 in MacCrann et al. 2017). However,
recently Hoekstra et al. (2021) showed that this bias can be effectively
mitigated using a process of METADETECTION (Sheldon et al. 2020).
In addition to this, an effective modelling of baryonic physics will be
needed on these scales to fully extract the cosmological information
on these small scales (see below).

5 DISCUSSION & CONCLUSIONS

In this study we have explored the effects that different extensions
to the standard model of cosmology have on the non-linear mat-
ter power spectrum, particularly on small scales. This was achieved
using a suite of numerical simulations which contain three cosmo-
logical variations (in addition to the fiducial ΛCDM realisation): i)
a running scalar spectral index (𝛼𝑠), warm dark matter (𝑀WDM)
and self-interacting dark matter (𝜎/𝑚). We focus on these exten-
sions in particular as they have previously been shown to suppress
small-scale structure and therefore offer a potential means to mit-
igate small-scale challenges which have been highlighted with the
ΛCDM model. We combined the small-scale power spectra ex-
tracted from the simulationswith the predictions of Halofit on large
scales to construct non-linear matter power spectra for the different
extensions spanning over six orders of magnitude in wavenumber
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Figure 5. Same as Fig. 4, however, here we plot the integrated SNR up to an increased ℓmax of 20,000. To do this we only make use of the Gaussian terms
of the covariance matrix, computed using the updated error equation shown by equation 15. This shows that if one was able to push to these smaller angular
scales, these observations could potentially be fruitful in putting constraints on the the cross-section for interaction of dark matter particles, as well as increased
constraining power on the running of the spectral index. The vertical grey dashed line corresponds to the previous ℓmax = 4,000.

(−4 ≤ log10 (𝑘 [ℎMpc−1]) ≤ 2.4). These power spectra were used
to compute the cosmic shear power spectrum. Finally, We evaluated
via synthetic lensing observations (generated with FLASK) whether
forthcoming Stage-IV lensing surveys (Euclid, LSST, and NGRST)
will potentially be able to differentiate these extensions from the
standard ΛCDM model.
The main findings of our study are as follows:

• A negative running spectral index, WDM and SIDM are all ca-
pable of producing a significant suppression in the non-linear matter
power spectrum at late times (Fig. 1). At 𝑧 = 0, this suppression

can range from ≈ 5% to ≈ 40% in the case of WDM, at 𝑘 ≈ 100
ℎMpc−1. Furthermore, in the case of WDM, the suppression in the
matter power spectrum increases with increasing redshift, rising to
>∼ 60% at 𝑧 = 1. A similar trend is seen for the negative running cos-
mology, although not to the same extent as for WDM. Conversely,
the suppression in the matter power spectrum increases with decreas-
ing redshift in an SIDM cosmology. This is due to the strong cores
developing in the density profiles of haloes as structures collapse and
the relative velocities of particles increase.

• From the different cosmological extensions we have examined,
a running scalar spectral index looks the most promising in having
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a measurable effect on the cosmic shear power spectrum for upcom-
ing surveys such as Euclid. This can be seen, somewhat counter-
intuitively, in the enhancement that is produced in the cosmic shear
signal on intermediate scales, due to the change in the amplitude of
the non-linear power spectrum with respect to ΛCDM on the impor-
tant scales (Fig. 3). We find that there is a significant signal for both
a negatively running spectral index and a positively running one,
shown through the signal-to-noise ratio (Fig. 4). This illustrates that
cosmic shear could be an additional probe which, if used in combi-
nation with other probes such as the CMB, could help place strong
constraints on the running 𝛼𝑠 .

• The constraining power for the other two cosmological exten-
sions of interest here, the mass of the WDM particle and the self-
interaction cross-section, is slightly weaker, owing to the fact that
these extensions affect only the smallest scales. We have shown that
upcoming cosmic shear measurements should be able to rule out
SIDM models with 𝜎/𝑚 > 10 cm2 g−1 or WDM models with ther-
mal relic masses 𝑀WDM < 0.5 keV. While these are perhaps weaker
constraints than what can be obtained from other methods (e.g.,
satellite abundances, strong lensing time delay, Lyman-𝛼 forest), we
note that cosmic shear is independent test that has very different
systematics than previous small-scale probes, making it still a very
worthwhile test of these small-scale extensions. In addition, we have
demonstrated that, if it is possible to push to higher multipoles with
these experiments, there is the potential that cosmic shear could help
place some of the strongest constraints on the SIDM cross-section
(𝜎/𝑚) (Fig. 5).

• Finally, we have illustrated that the standard analytic prediction
for the error associatedwith the cosmic shear cross-correlation power
spectrum (between tomographic bins) significantly underestimates
the true error that one recovers when computing the same power
spectrum from a map which includes a prescription for galaxy shape
noise by a factor of around 20 at ℓ ≈ 1, 000 (Fig. B1) . This is because
the standard prescription ignores the associated Poisson error. We
have introduced a modification to the analytic form of the error
which modifies the error associated with cross-correlation power
spectrum (equation 15) and is found to bring the analytic errors into
much better agreement with our empirical findings based on cross-
correlating shape noise maps.

One of the main focuses of upcoming weak lensing surveys, such
as Euclid, LSST and NGRST, is to help place constraints on the
dark energy equation of state parameter 𝑤, or the time varying dark
energy equation of state parameters𝑤0, 𝑤𝑎 . It is well-established that
cosmic shear tomography provides a sensitive probe of the growth
of structure which, in turn, depends on the evolution of dark energy.
However, here we illustrate that the constraining power of cosmic
shear measurements also extends beyond dark energy and the other
Friedmann parameters. Specifically, we have shown that cosmic shear
observations can potentially place constraints on the running of the
spectral index, as well as the cross-section for interaction of dark
matter particles (SIDM) and the thermal relic mass (WDM). As a
final test, we have calculated the source density required to improve
constraints on the less extreme cosmological models such as the
𝑀WDM = 2.5, 5.0 and 𝜎/𝑚 = 0.1 cm2 g−1 models. We find that for
a sky coverage equal to that of Euclid, the required source density
of background galaxies should be ≈ {85, 525, 60} galaxies/arcmin2,
respectively, in order to obtain a SNR of > 1, when pushing the
analysis to ℓmax=20,000.
The tests performed in this study consisted of whether forthcom-

ing cosmic shear surveys could distinguish (on the basis of SNR)
a number of extensions, with specific parameter values, from the

baseline ΛCDM model. The tests were particularly simple in that,
in most cases, all of the cosmological parameters were held fixed,
apart from the new parameters describing the extension. A more
realistic test would be to allow the various parameters to be free
and to marginalise over them when estimating the uncertainty (and
potentially bias) in the recovered extension parameters (e.g., WDM
particle mass). However, to achieve this requires many more simula-
tions than produced here and potentially sophisticated methods (e.g.,
emulators) for interpolating the results for arbitrary cosmological
parameter values. While our promising results demonstrate that this
is clearly worthwhile, it is a large undertaking and we leave this for
future work.

In this studywe focused on the constraining power of future cosmic
shear measurements. However, there are additional complementary
two-point statistics that may be helpful in placing constraints on these
cosmological extensions. In particular there is galaxy clustering,
which describes the clustering between lens galaxies, and galaxy–
galaxy lensing, which describes the over-density of mass around lens
galaxies. Together with cosmic shear, these 3×2pt statistics have been
shown to help place tighter constraints on the cosmological param-
eters Ωm and 𝜎8 (see e.g. fig. 6 of DES Collaboration et al. 2021).
However, combining all three of these probes is beyond the scope of
this work, which focused on the constraining power of cosmic shear
alone. In future work, we will explore how the constraints in this
paper change when combining these 3×2pt statistics.

An important caveat to the work we have presented is that the
simulations we used neglected the effects of baryonic physics. Previ-
ous work has demonstrated that when numerical simulations include
complex galaxy formation physics, such as feedback from super-
novae and active galactic nuclei, they can produce relatively large
effects (typically 5-20%) on the non-linear matter power spectrum
(e.g., van Daalen et al. 2011; Chisari et al. 2018; Springel et al. 2018;
van Daalen et al. 2020). Furthermore, these effects due to galaxy
formation physics have been shown to be visible in the cosmic shear
two-point correlation functions at a similar level (Semboloni et al.
2011). Our work has focused mostly on small scales where, as op-
posed to baryons suppressing the power spectrum via the expulsive
effects of feedback on relatively large scales (the focus of most pre-
vious studies), it is more likely that cooling and star formation will
lead to an enhancement in the power spectrum. Regardless ofwhether
baryons produce a suppression or an enhancement, the effects may be
degenerate with the cosmological extensions we have examined here.
As discussed in Stafford et al. (2020b), ultimately what is required
is a systematic and simultaneous exploration of the (uncertain) im-
pact of baryons and cosmological variations on small scales and an
understanding of how these effects propagate through to observables
on small scales such as the cosmic shear power spectrum.

In closing, to help mitigate potential degeneracies, recent studies
have shown the power of combining complementary probes when
placing constraints on additional cosmological (and baryon) param-
eters. For example, Enzi et al. (2020) and Nadler et al. (2021) have
illustrated the power of combining multiple probes (Lyman-𝛼 for-
est, strong lensing and the abundance of Milky Way satellites) in
placing constraints on the WDM particle mass. Measurements of
cosmic shear on small scales provide an important new tool in this
regard and one that has very different systematic uncertainties from
currently used small-scale probes. Forthcoming Stage-IV lensing sur-
veys therefore offer a promising new window to study cosmological
and galaxy formation physics on small scales.
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APPENDIX A: RESOLUTION AND BOX SIZE STUDY

In Section 2.3.1 we detail our method for constructing the non-linear
matter power spectrum spanning a large range of 𝑘-modes, which
is done using the ratio of the matter power spectrum extracted from
the numerical simulations with respect to the result from the ΛCDM
simulations. As we show here, splicing ratios of power spectra, rather
than absolute power spectra, is more robust to changes in resolution
and box size. We do this using an additional sub-suite of simulations,
examining the running spectral index cosmological extensions,which
consists of various box sizes and resolutions. Firstly, there are two
setups which are used in the analysis detailed in the paper, which
have box sizes of 25 and 400 ℎ−1Mpc, each with 10243 particles. We
then compare the non-linear matter power spectrum extracted from
these simulations to that extracted from simulations which are a step
down in resolution. These simulations are 25 and 100 ℎ−1Mpc on a
side and have 5123 and 2563 particles respectively. Thus, this allows

us to explore the effects of both box size and resolution on both the
absolute matter power spectrum and the ratio with respect toΛCDM.
Fig. A1 shows the non-linear matter power spectrum for two run-

ning of the spectral index models. In the left panel we show how
the simulation box size affects the absolute power spectra (top) and
the ratio with respect to a complementary ΛCDM simulation of the
same box size (bottom), both at fixed resolution. In the right panel,
we show how resolution affects these two statistics at fixed box size.
Therefore, it is important to note that when comparing the solid to
dashed lines (or dotted) in the bottom panels, both the numerator and
denominator have changed. Comparing the different linestyles allows
us to assess the convergence of the ratio of power spectra from the
running cosmologies with respect to a ΛCDM power spectrum as a
function of varying box size at fixed resolution, or vice versa.
One can see that while the absolute power spectra tend to disagree

with each other on the largest scales sampled in the box, the ratio
is a much better converged quantity. This is particularly relevant
for the smaller volume boxes, where the size of the simulations
cause an almost order of magnitude suppression in the matter power
spectrum on the largest scales sampled by the simulated volume
(comparing the simulation curves to the HALOFIT curve). Conversely,
if we compare the ratios at a 𝑘−scale of around 10 ℎMpc−1, one can
see that these agree to within a few percent across the varying box
sizes and resolutions.

APPENDIX B: ANALYTIC ERROR ON CROSS POWER
SPECTRA

As discussed in Section 3.1, there are two sources of error associated
with measurements of the cosmic shear power spectrum (ignoring
other systematic errorswhich exist such as intrinsic alignment errors),
these being cosmic variance and Poisson noise. It is commonplace
to assume that Poisson noise only affects the uncertainty in the auto-
correlation power spectrum. However, as we show here, cross-power
spectra can still have a significant Poisson noise term.
As shown in Fig. 3, we find there to be a significant difference

in the error bars on small angular scales (large multipoles) when
comparing equation 10 to the error bars we derive from synthetic
weak lensing maps using FLASK. The level of disagreement between
the two sets of error bars is more clearly illustrated in Fig. B1, which
shows the ratio of the errors extracted directly from the FLASK power
spectra to the errors computed using equation 10. Note that for clarity
we only show here the result for the bottom three panels of Fig. 3,
although the results presented here is true for the other auto- and
cross-correlation spectra. This shows how well the two sets of errors
agree with one another in the case of the auto-correlation power
spectra, whereas, examining the red curve in the cross-correlation
power spectrum panel, the error bars diverge significantly at high
multipoles, due to equation 10 having no treatment for Poisson noise
on the cross-correlation power spectrum.
The fiducial error associated with the cosmic shear power spec-

trum (shown in equation 10) is unable to capture the residual error
which exists on the cross-correlation power spectrum. This motivates
us to produce a more general formula which is able to capture this
residual error without having to rerun FLASK for each possible tomo-
graphic setup. For this reason, we have run a set of FLASK noise-only
realisations (with the weak lensing signal due to gravity removed) to
derive a functional form for the residual Poisson noise error on the
cross-correlation power spectrum. The maps were produced using
the same tomographic setup described in Section 4.1, for varying
levels of the source density of galaxies. In total we produced four
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Figure A1. Testing how both box size and resolution affect the ratios of the power spectrum extracted from a cosmology with a running spectral index with
respect to the ΛCDM result. Left panels show the results for fixed resolution and varying box size, while the right panels show the opposite. The top panel in
each case shows the absolute power spectra at 𝑧 = 0. The three sub-panels below show the ratio as a function of redshift. The ratio is computed with respect
to the power spectrum from the ΛCDM simulation with the same box size and resolution as in the running spectral index case. The ratio of the power spectra
appears to be well converged for the various box sizes and resolutions examined here which motivates us to combine the ratios over the extended 𝑘−scale, as
described in Section 2.3.1, rather than the absolute power spectra.

sets of realisations sampling: 𝑛𝑠 = 15, 30, 45, 60 galaxies/arcmin2,
with each set having 100 realisations of each tomographic bin. We
then computed the auto- and cross-correlation power spectra of these
maps, along with cross-correlation power spectra of maps with vary-
ing source densities (to test the case where two tomographic bins
may not have the same effective number density of galaxies).

We find that an additional term, which only contributes to the
cross-correlation power spectrum, is required. See equation 15. This
term includes amultiplicative combination of the two effective source
densities in each tomographic bin and is able to reproduce the addi-
tional error on the cross exceptionally well. This is illustrated again
in Fig. B1 in the cross-correlation power spectrum panel (top left),
where the black line now shows the ratio of the theoretical error
bars, now computed using equation 15, with the error bars extracted
from FLASK. Note that here we show the results from the full anal-
ysis (i.e., including an intrinsic lensing signal, as well as the noise).
Note that the slight disagreement which exists between the errors
on large angular scales is strongly dependent on the sky coverage of
the survey. We computed this same test where we had a Euclid-like
galaxy sample, but a full sky survey and this brought the errors into
excellent agreement even at low multipoles.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–18 (2015)



Constraining cosmological extensions with cosmic shear 19

101 102 103

`

100

101

∆
F

L
A

S
K
/∆

th
eo

[1–1]

100

101

∆
F

L
A

S
K
/∆

th
eo

[1–2]

102 103

`

[2–2]

Shape Noise

No Shape Noise

Figure B1. The ratio of the errors extracted directly from the multiple realisa-
tions of a given ΛCDM auto/cross-correlation power spectrum as computed
by FLASK with respect to the theoretical error bars computed using equations
10 & 15. Note the tomographic bins shown here are the same as those in
the previous plots, however, we do not show the full tomographic setup for
brevity as we only need to focus on one cross-correlation power spectrum
(with the result being the same for the rest). The black line shows the result
when one includes a prescription for the error associated with Poisson noise
in the theoretical calculation of the error on the auto/cross-correlation power
spectrum, i.e. computed using equation 15, with the red line being the result
if one does not, i.e. computed using equation 10.
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