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ABSTRACT
The halo model formalism is widely adopted in cosmological studies for predicting the growth of large-scale structure in
the Universe. However, to date there have been relatively few direct comparisons of the halo model with more accurate (but
much more computationally expensive) cosmological simulations. We test the accuracy of the halo model in reproducing the
non-linear matter power spectrum, 𝑃(𝑘), when the main inputs of the halo model (specifically the matter density profiles, halo
mass function, and linear bias) are taken directly from the BAHAMAS simulations and we assess how well the halo model
reproduces 𝑃(𝑘) from the same simulations. We show that the halo model generally reproduces 𝑃(𝑘) in the deep non-linear
regime (1-halo) to typically a few percent accuracy, but struggles to reproduce (approx. 15% error) 𝑃(𝑘) at intermediate scales
of 0.1<∼ 𝑘 [ℎ/Mpc] <∼ 3 at 𝑧 = 0, marking the transition between the 1-halo and 2-halo terms. We show that the magnitude of this
error is a strong function of the halo mass definition (through its effects on radial extent of haloes) and of redshift. Furthermore,
we test the accuracy of the halo model in recovering the relative impact of baryons on 𝑃(𝑘). We show that the systematic errors
in recovering the absolute 𝑃(𝑘) largely cancel when considering the relative impact of baryons. This suggests that the halo model
can make precise predictions for the baryonic suppression, offering a fast and accurate way to adjust collisionless matter power
spectra for the presence of baryons and associated processes.
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1 INTRODUCTION

Large-scale structure (LSS) cosmology is now entering a golden era,
with a large number of ongoing and forthcoming surveys poised to
accurately measure the growth of structure over a wide range of
physical scales. For example, Stage-IV cosmic shear surveys such as
Euclid1, the Rubin Observatory Legacy Survey of Space and Time
(LSST)2, and the Nancy Grace Roman Space Telescope (NGRST)3
aim to measure the matter power spectrum to percent level accuracy,
in principle allowing constraints to be placed on important cosmo-
logical parameters, such as the dark energy equation of state, to
a similar level of accuracy. Comparatively tight constraints are also
expected from forthcoming X-ray surveys with eROSITA4, Sunyaev-
Zel’dovich (SZ) effect surveys with SPT-3G5, Advanced ACTPol6,
and Simons Observatory7, and optical surveys (e.g., galaxy cluster-
ing, galaxy clusters) such as LSST, Euclid and DESI8.

★ E-mail: a.acuto@2017.ljmu.ac.uk
† E-mail: i.g.mccarthy@ljmu.ac.uk
1 https://www.euclid-ec.org/
2 https://www.lsst.org/
3 https://roman.gsfc.nasa.gov/
4 https://www.mpe.mpg.de/eROSITA
5 https://pole.uchicago.edu/
6 https://act.princeton.edu/
7 https://simonsobservatory.org/
8 https://www.desi.lbl.gov/

In order to deliver on the aims of these surveys, a clear require-
ment is that we must be able to predict the observables (e.g., weak
lensing power spectrum, galaxy clustering, SZ power spectrum) for
a given cosmology, to an accuracy that is at least as precise as the
statistical measurement errors. Otherwise, we risk biasing the de-
rived cosmological parameters. In the specific case of weak lensing,
this means predicting the matter power spectrum to percent level
accuracy. The problem is particularly challenging, as most of the
signal from current LSS tests comes from non-linear scales, thus re-
quiring theoretical models to accurately follow matter as shells cross
and collapse into ‘haloes’, with galaxies potentially forming at their
centres.

At present there are two general approaches to modelling the clus-
tering and non-linear growth of matter: via direct N-body cosmologi-
cal simulations or the so-called halomodel. In the former case, matter
is discretised into large numbers of particles and their equations of
motion are solved in the presence of a time-evolving background ex-
pansion. Depending on the resolution and number of particles, such
calculations can be computationally expensive and cannot at present
be directly incorporated in, e.g., Markov chain approaches to cos-
mological parameter inference (which typically require thousands of
evaluations). A promising solution to this problem is via emulation
techniques (e.g., Kwan et al. 2015; Heitmann et al. 2016; Rogers et al.
2019; DeRose et al. 2019; Nishimichi et al. 2019; Pellejero-Ibañez
et al. 2020; Spurio Mancini et al. 2021; Bose et al. 2021), whereby
a grid of cosmological simulations spanning some cosmological pa-
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rameter landscape is first run and then an emulator (e.g., based on
Gaussian process interpolation or neural networks) is used to quickly
and accurately interpolate the results (e.g., the matter power spec-
trum) for any choice of cosmological parameters that are within the
boundaries of the initial suite. Such emulators, which can typically
be run in fractions of a second, can be implemented in cosmological
likelihood analyses.
While emulation of cosmological simulations is clearly going to

be an important tool going forward, it does have limitations. For ex-
ample, predictions are confined to the parameter space defined in the
initial base grid of simulations, where there is a trade off between
accuracy of the emulator prediction, the volume of the cosmolog-
ical landscape being surveyed (i.e., the range of parameter values
included), and the number of simulations that can feasibly be run
from the base grid. In addition, adding new extensions (e.g., beyond
ΛCDM) or probing a larger (or different) cosmological parameter
spaces often requires one to considerably adapt the base grid of sim-
ulations used to build the emulator, which can be computationally
expensive. In addition, at the moment most emulators are based on
simulations that do not incorporate the important role of baryons.
Nevertheless, it has been shown in recent work based on cosmolog-
ical hydrodynamical simulations that baryons can alter the matter
power spectrum by up to a few tens of percent (e.g., Jing et al. 2006;
van Daalen et al. 2011; Schneider & Teyssier 2015; Mummery et al.
2017; Chisari et al. 2019; van Daalen et al. 2020), which is sig-
nificantly larger than the anticipated statistical error of future weak
lensing measurements.
The halo model (Peacock & Smith 2000; Seljak 2000; Ma & Fry

2000; Cooray & Sheth 2002; Smith et al. 2003) potentially provides
a solution to many of these issues. In brief, the halo model provides
a simple, physically-motivated picture for the clustering of matter
and haloes. In its standard and simplest form, the halo model re-
quires as input the distribution of matter within haloes (i.e., their
density profiles), the mass function of haloes (i.e., the abundance
of haloes as a function of mass and redshift), and a prescription for
halo bias which describes how the clustering of haloes is related to
the clustering of matter in general. The mass function and bias can
in principle be derived from analytic/semi-analytic arguments (e.g.
Press & Schechter 1974; Sheth & Tormen 1999; Sheth et al. 2001),
though it is now commonplace to use large cosmological simulations
to provide more accurate determinations of these quantities (Tinker
et al. 2008; Despali et al. 2016; Bocquet et al. 2016; Castro et al.
2021). The density profiles are generally also extracted from cos-
mological simulations (e.g., a Navarro-Frenk-White profile using a
mass–concentration–redshift relation).
As the halomodel can bewritten down analytically in a small num-

ber of equations (see Section 2), it can be evaluated extremely quickly
and therefore easily incorporated within cosmological pipelines. Fur-
thermore, as it provides a physically-intuitive description for the mat-
ter distribution within haloes, it is relatively straightforward to adjust
it to incorporate the impact of baryons (e.g. Semboloni et al. 2011,
2013; Fedeli 2014; Debackere et al. 2020; Mead et al. 2021). The
free parameters associated with the baryon physics can either be con-
strained by cosmological hydrodynamical simulations, external ob-
servations, or marginalised over when jointly fitting a cosmological
dataset (e.g., cosmic shear) and baryonic parameters (e.g. Shirasaki
et al. 2020).
Given its speed, flexibility, and intuitive design, the halo model is

used for theoretical interpretation inmany cosmological surveys (e.g.,
Battaglia et al. 2012; Horowitz & Seljak 2017; Hill & Spergel 2014;
Robertson et al. 2020; Schneider et al. 2019; Giocoli et al. 2020).
However, an important question is how accurate is the halo model?

In particular, in order to derive unbiased constraints on cosmological
(and possibly baryonic) parameters, we require that the halo model
predicts the non-linear matter power spectrum (𝑃(𝑘)) accurately
given the input profiles, mass function, and linear bias. However,
to our knowledge, there have been very few (and no recent, in the
era of precision cosmology) tests of the internal accuracy of the
halo model for predicting 𝑃(𝑘). By ‘internal’ accuracy, we mean
the following: given the density profiles, mass function, and linear
bias from a particular simulation, how well does the halo model
reproduce the measured power spectrum from the same simulation?
A second important question is, how do baryons change this picture?
Although these questions are relatively simple, they are in fact very
challenging tests of the halo model, as once the input profiles, mass
function, and bias are specified, there are no free parameters in the
standard halo model. It is possible to add extra degrees of freedom
to the halo model and to constrain these using fits to the power
spectra of cosmological simulations (e.g, Mead et al. 2015, 2016,
2020), but the physical interpretation of such additions is unclear, as
are the potential dependencies of these terms on the cosmological
parameters.
Given that the halo model can be informed using quantities ex-

tracted directly from the simulations, should we not expect it to
accurately recover the matter clustering in the simulations? In terms
of the density profiles, one source of error is that scatter in the density
profiles at fixed halo mass and redshift is generally not incorporated
into the halo model. Additionally, the model ignores issues such as
non-sphericity of haloes (e.g. Smith & Watts 2005) and the pres-
ence of substructures (and their clustering, which may differ from
the smooth dark matter component, e.g. Sheth & Jain 2003). There
is also an expectation that the assumption of linear bias will break
down on certain scales (e.g., Smith et al. 2007; Baldauf et al. 2012;
Mead & Verde 2021). In addition, although the halo mass function
is a simple statistic with apparently little wiggle room, we will show
that the accuracy of the halo model actually depends strongly on the
choice of halo mass definition.
In the present study, we use the BAHAMAS9 simulations (Mc-

Carthy et al. 2017, 2018) to test the internal accuracy of the standard
halo model in terms of its prediction for 𝑃(𝑘). We evaluate the accu-
racy both in the context of collisionless physics (‘dark matter only’)
and in the presence of baryons and processes associated with galaxy
formation (e.g., feedback). Lastly, we comment on the relative ac-
curacy of the halo model, in terms of the ratio of the matter power
spectrum in a hydrodynamical context to that from a collisionless
context (sometimes referred to as the baryon ‘suppression factor’).
In this paper we adopt aWMAP 9 cosmology (Hinshaw et al. 2013)

with parameters ℎ = 0.7, Ω𝑚 = 0.2793, Ω𝑏 = 0.0463, 𝑛𝑠 = 0.972,
𝜎8 = 0.8211 and Ωa = 0.0 .
The paper is structured as follows. In Section 2 a general de-

scription of the halo model formalism and the BAHAMAS suite of
simulations is provided. In Section 3 we calibrate the halo model
using the simulations and present tests of our methodology. In Sec-
tion 4 we present the 𝑃(𝑘) predictions for both the collisionless
and hydrodynamical cases, commenting on the absolute and relative
accuracy of the halo model and discussing the implications of the
results. Finally, in Section 5 we summarise our findings.

9 https://www.astro.ljmu.ac.uk/ igm/BAHAMAS/
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Accuracy of the halo model 3

2 METHODOLOGY

In this section we present a brief description of the standard halo
model and how it is used to predict the 3D matter power spectrum,
𝑃(𝑘). We refer the reader to the original studies that introduced this
formalism (Peacock & Smith 2000; Seljak 2000; Ma & Fry 2000;
Cooray & Sheth 2002; Smith et al. 2003) for further details (see also
Mead et al. 2021 for an excellent recent discussion).
The halo model describes the clustering of haloes and matter via

the power spectrum (i.e., the Fourier transform of their two-point
correlation functions) as the sum of two terms, the so-called ‘1-halo’
and ‘2-halo’ terms:

𝑃(𝑘)tot = 𝑃(𝑘)1h + 𝑃(𝑘)2h (1)

where the first term (1-halo) describes the clustering of matter within
a single halo (also called intra-halo clustering), while the second term
(2-halo) describes the (correlated) clustering of matter in neighbour-
ing haloes (Smith et al. 2011).
The 1-halo and 2-halo terms can be recast in terms of physical

quantities as:

𝑃(𝑘)1h =
∫

𝑑𝑀
𝑑𝑛(𝑀, 𝑧)

𝑑𝑀
|X̃𝑘 (𝑀, 𝑧) |2 ,

𝑃(𝑘)2h = 𝑃lin (𝑘, 𝑧)
[∫

𝑑𝑀
𝑑𝑛(𝑀, 𝑧)

𝑑𝑀
𝑏(𝑀, 𝑧) |X̃𝑘 (𝑀, 𝑧) |

]2
,

(2)

where 𝑑𝑛/𝑑𝑚 is the halo mass function (the space density of haloes
of a given mass), 𝑏 is linear halo bias computed via the square of the
ratio of the halo power spectrum over the matter power spectrum in
the linear regime, 𝑃lin is the linear matter power spectrum, computed
here using the software CAMB (Lewis & Challinor 2006) 10, and
X̃𝑘 is the Fourier-transform of the 3D spherical matter density profile
convolvedwith the Fourier-transform of the top-hat window function,
expressed as:

X̃𝑘 (𝑘, 𝑀) = 1
𝜌

∫ 𝑅Δ

0
4𝜋𝑟2𝜌(𝑟, 𝑀, 𝑧) sin(𝑘𝑟)

𝑘𝑟
𝑑𝑟 . (3)

Above, 𝜌 is the total matter density profile, 𝑅Δ is the radial extent
of the halo which is specified by the choice of halo mass definition
(see discussion in Section 3.1), and 𝜌 is the mean comoving density
of the Universe.
Belowwewill explore in detail each component of the halo model.

2.1 Halo density profiles

A key component in the halo model’s prediction for 𝑃(𝑘) is the way
that matter is distributed inside haloes; i.e., their total matter density
profiles. A common choice in this regard, which is motivated on
the basis of collisionless (N-body) cosmological simulations, is the
Navarro-Frenk-White (NFW) profile (Navarro et al. 1997):

𝜌 =
𝜌0(

𝑟
𝑟𝑠

) (
1 + 𝑟

𝑟𝑠

)2 , (4)

where 𝑟𝑠 is the scale radius and 𝜌0 is the normalisation. The scale
radius is a free parameter, whereas one can either leave the normal-
isation (𝜌0) free or specify it through the halo mass definition (e.g.,
chosen so that the mean density within 𝑅200,crit from the simulations
is 200 times the critical density). The scale radius is often recast

10 https://camb.info/

in terms of the halo concentration, 𝑐Δ ≡ 𝑅Δ/𝑟𝑠 , where 𝑅Δ is the
radius used in the halo mass definition. The concentration is known
to depend on halo mass, redshift, and the choice of cosmological
parameters and various fitting functions for this behaviour have been
proposed (Duffy et al. 2008; Diemer & Kravtsov 2015; Ludlow et al.
2014, 2016). Using these fitting functions for the concentration, one
completely specifies the distribution of mass within haloes given a
total halo mass, redshift, and the cosmological parameters.
While the NFW profile provides a reasonably good description of

the typical density profiles of collisionless simulations, it performs
less well in describing the total matter density profiles in cosmologi-
cal hydrodynamical simulations (Duffy et al. 2010; Dutton &Macciò
2014; Sereno et al. 2016; Schaller et al. 2015a,b). One can generalise
the NFW form to allow for additional freedom (Nagai et al. 2007):

𝜌(𝑟, 𝑀, 𝑧) = 𝜌0

(
𝑟

𝑟𝑠

)𝛼 [
1 +

(
𝑟

𝑟𝑠

)𝛾 ]−𝛽
, (5)

where 𝜌0, 𝛼,𝛾 and 𝛽 are free parameters. This parametric form is
often used to model the pressure distribution of the hot gas around
groups and clusters (e.g., Arnaud et al. 2010; Battaglia et al. 2012) but
would also be suitable for the mass density distribution. In principle
the free parameters of the generalised NFW form are also functions
of mass and redshift, which leads to an even larger number of free
parameterswhichwould be expected to have significant degeneracies.
Our approach is to allow for additional freedom relative to the

original NFW form, but with fewer free parameters than in the gener-
alised NFW case. In particular, we adopt the so-called Einasto profile
(Einasto 1965), which recent work has shown better reproduces the
matter distribution in haloes in collisionless simulations (Springel
et al. 2008; Navarro et al. 2010; Dutton &Macciò 2014; Brown et al.
2020). This is due to its additional flexibility relative to NFW (it
has an additional free parameter) which ought to allow it to better
describe hydrodynamical simulations as well (indeed we show this
below, in Section 4). The Einasto profile can be expressed as:

𝜌(𝑟, 𝑀, 𝑧) = 𝑓0 (𝑀, 𝑧) exp
[
−𝐴(𝑀, 𝑧)𝑟𝛼(𝑀,𝑧)

]
, (6)

with three main parameters 𝑓0, 𝐴 and 𝛼 which need to be fit for. As
discussed in Section 3.1, for these three parameters we adopt power
law dependencies on halo mass and redshift, resulting in a total of 9
free parameters overall to describe 𝜌(𝑀, 𝑟, 𝑧).
Note that, as our aim is primarily to test the accuracy of the halo

model, one does not actually need to use a parametric form for
the density profiles, but can instead use non-parametric (tabulated)
density profiles directly from the simulations. Indeed, we will show
the results for both cases: fits to the profiles (with an Einasto form)
and using the tabulated profiles directly.

2.2 Halo mass function

Another key ingredient of the halo model formalism is the halo mass
function (HMF). This quantity can be derived from analytic/semi-
analytic theoretical arguments, such as those put forward by Press &
Schechter (1974) and Sheth et al. (2001). However, more accurate
representations can be derived from fits to large suites of cosmologi-
cal simulations (e.g., Jenkins et al. 2001; Tinker et al. 2008; Bocquet
et al. 2016; Despali et al. 2016; Bocquet et al. 2020; Diemer 2020).
It is commonplace to parametrise the halo mass function from

cosmological N-body simulations as:

𝑑𝑛(𝑀, 𝑧)
𝑑𝑀

= 𝑓 (𝜎) 𝜌
𝑀

ln𝜎−1

𝑑𝑀
, (7)

MNRAS 000, 1–16 (2021)

https://camb.info/


4 A. Acuto et al.

where 𝑓 (𝜎) is a function fit to the simulations to encapsulate the
dependence on redshift and 𝜎, the mass variance, is defined as:

𝜎2 =
1
2𝜋2

∫
𝑃(𝑘)�̂�2 (𝑘𝑅)𝑘2𝑑𝑘, (8)

where 𝑃(𝑘) is the linear matter power spectrum, �̂� is the Fourier
transform of the top-hat window function. This form has been shown
to reproduce the halo mass function from simulations11 to ≈10%
accuracy (Tinker et al. 2008; Diemer 2020). Note that the cosmology
dependence of the HMF enters in through both the mass variance
(which depends on the cosmology-dependent linear power spectrum)
and the mean density.
Note that these halo mass functions are typically derived from

collisionless (DM-only) simulations and therefore they do not ac-
count for any baryonic processes (e.g., feedback) affecting haloes.
Given the important role of baryons in setting the mass distributions
of haloes, we will make use of the BAHAMAS HMFs to build a
‘correction’ function to allow us to study the impact of baryons on
the matter power spectrum via the halo model (see Section 3.2.1).
As in the case of the density profiles, it is not necessary to use ‘off

the shelf’ predictions for the halo mass function for the present study.
We will therefore compare the predictions of the halo model using
the Tinker et al. (2008) (which is perhaps the most common choice
in the literature) with those using the tabulated halo mass functions
derived directly from the BAHAMAS simulations. In this way we
can assess the impact of using an internally consistent evaluation of
the halo model.

2.3 Halo bias and linear power spectrum

With the matter distribution within haloes (density profiles) and the
number density (mass function) specified, the remaining ingredient
is to specify how haloes cluster in space, in terms of their 2-point
correlation function (or, in Fourier space, their power spectrum).
We adopt the standard assumption that haloes are linearly-biased
tracers of the overall matter distribution. Specifically, the linear bias
is evaluated as:

𝑏(𝑘) =
√︄

𝑃hh (𝑘)
𝑃lin,mm (𝑘)

, (9)

where 𝑃hh (𝑘) and 𝑃lin,mm (𝑘) are the halo-halo and linear matter-
matter power spectra, respectively. On large (linear) scales (small 𝑘),
𝑏(𝑘) → const., which is what is typically referred to as just the linear
bias, which is what we use here.
In the present study, we use the linear bias–peak height relation

of Tinker et al. (2010) to calculate the linear bias as a function of
halo mass and redshift (and cosmological parameters). Note that the
peak height is defined as a = 𝛿crit/𝜎(𝑀) where 𝛿crit is the density
threshold for collapse (usually assumed to be equal to 1.686) and
𝜎(𝑀) is the linear matter variance measured within the Lagrangian
scale, R, corresponding to halo mass 𝑀 .
Note that we could also use the linear bias from the BAHAMAS

simulations, instead of that from Tinker et al. (2010). However, the
choice of bias does not turn out to be important for computing the total
matter power spectrum, 𝑃(𝑘), since, as we discuss below, an additive
correction to the 2-halo termmust be applied anyway (for unresolved
haloes) in order to force it to match the linear theory prediction for

11 The accuracy of the Press & Schechter (1974) and Sheth et al. (2001) mass
functions is typically 20%, with a general over-prediction of the abundance
of the most massive objects (Mead et al. 2015; Del Popolo et al. 2017).

the matter power spectrum on large scales. This implies that, even
if the adopted bias model were to be relatively inaccurate in terms
of describing the simulations, the additive correction factor would
compensate12 by forcing the computed 2-halo term to match the
linear prediction on large scales anyway. If we were interested in
examining the clustering of haloes (rather than matter), the choice of
bias would obviously bemuchmore important. Furthermore, we note
that the impact of baryons on the linear bias is expected to be small
(e.g., Castro et al. 2021), which we have verified with BAHAMAS,
and therefore we use the same formalism (Tinker et al. 2010) for both
the collisionless and baryon cases.
A physical condition that must be met is that, when integrated over

all halo masses, the bias must be unity. That is, the total matter is
unbiased, by definition; i.e.:∫

𝑏(a) 𝑓 (a)𝑑a = 1 , (10)

where 𝑓 (a)𝑑a = (𝑑𝑛(𝑀)/𝑑𝑀) (𝑀/𝜌𝑚)𝑑𝑀 13. This is true when
integrating over all possible halo masses. However, due to finite
box size and resolution, simulations do not sample all possible halo
masses (in particular masses below resolution limit of the simula-
tions), whichmeans that if one integrates over just the resolved haloes
in a simulation box, one does not recover the large-scale linear power
spectrum using the halo model (van Daalen & Schaye 2015; Schmidt
2016; Mead et al. 2020). A correction for these unresolved haloes is
therefore required to force the halo model to agree with linear theory
on large scales.
We follow previous studies (Schmidt 2016; Mead et al. 2020;

Philcox et al. 2020) and add in the contribution of low-mass haloes
to the 2-halo term in order to recover the linear regime (see the
appendix of Mead et al. 2020 for further discussion). From eqn. 10,
the additive term can be derived as:

𝐴low = 1 − 1
𝜌

∫ ∞

𝑀min

𝑏(𝑀) 𝑑𝑛(𝑀)
𝑑𝑀

𝑑𝑀 , (11)

where 𝑀min is the minimum halo mass resolved in the simulation,
which for BAHAMAS we take to be 4 × 1011M� ℎ−1.
With the above we construct the additive component for the 2-halo

term as:

𝐶add =
𝐴low �̃�𝑘 (𝑀min)

𝑀min
, (12)

where �̃�𝑘 is the Fourier transform of the 3D density profile of the
lowest resolved halo mass, 𝑀min.
The term in eqn. 12 is added to the standard 2-halo term before

being multiplied by the linear matter power spectrum, as:

𝑃(𝑘)2h =
[∫ ∞

𝑀min

𝑑𝑛(𝑀, 𝑧)
𝑑𝑀

𝑏(𝑀, 𝑧) |X̃𝑘 (𝑀, 𝑧) |𝑑𝑀 + 𝐶add (𝑀min)
]2

×𝑃lin (𝑘, 𝑧).
(13)

As noted above, this approach guarantees that the constructed

12 A subtle point is that the correction factor is an additive term to the overall
2-halo term, whereas the bias enters into the 2-halo term in a multiplicative
way and it depends on halo mass. Thus, the additive correction term is not
perfectly degenerate with the bias, but it is very close to being so.
13 The conservation of matter requires fulfilling∫
𝑏 (𝑀 )𝑀 (𝑑𝑛(𝑀 )/𝑑𝑀 )𝑑𝑀 = 𝜌, where 𝜌 is the mean background
density.
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halo model reproduces the linear clustering of matter on large scales.
Alternatively, one could simply replace the 2-halo termwith the linear
power spectrum and find very similar results. The only significant
difference between eqn. 13 and the linear power spectrum occurs
on small scales where the 1-halo term is already dominant. But for
completeness we use the full expression for the (re-normalised) 2-
halo term.

2.4 Additional (ad-hoc) considerations

In this section we will briefly explore some additional, ad-hoc ad-
justments of the standard halo model which have been implemented
in previous works. Specifically, we follow some of the adjustments
introduced in Mead et al. (2015) to avoid several unphysical artefacts
in the standard halo model.
Firstly, we apply a smooth cut-off of the 2-halo term on quasi-linear

scales. As discussed by Mead et al. (2015) and Mead et al. (2016),
linear theory overpredicts the matter power spectrum on quasi-linear
scales and does not accurately capture the damping of the baryonic
acoustic oscillations (BAO) peaks in particular 𝑘 ≈ 0.2−0.4 ℎ/Mpc.
Following Mead et al. (2015) (see their section 3.2.1) we therefore
apply a tapering to the 2-halo term on quasi-linear scales using:

Δ
′2
2h (𝑘) =

[
1 − 𝑓 tanh2 (𝑘𝜎v,d/

√︁
𝑓 )

]
Δ22h (𝑘) , (14)

whereΔ2 is the dimensionless power spectrumcomputed viaΔ2 (𝑘) =
4𝜋(𝑘/2𝜋)3𝑃(𝑘) and 𝜎𝑣 is the 1D linear-theory displacement vari-
ance defined as:

𝜎2v,d =
1
3

∫ ∞

0

Δ2lin (𝑘)
𝑘3

𝑑𝑘 , (15)

where 𝑓 in eqn. 14 is the damping factor, andΔ2lin is the dimensionless
linear power spectrum computed using CAMB . Mead et al. (2016)
find that 𝑓 has a small dependence on 𝜎v,d as 𝑓 = 0.095𝜎1.37v,d . Note
that the application of eqn. 14 only affects 𝑃(𝑘) by about a percent
on large scales and therefore has no significant impact on the results
or conclusions of our study, but we include it for completeness.
As also discussed by Mead et al. (2015), but firstly presented

in Cooray & Hu (2002) (see also Smith et al. 2011; Valageas &
Nishimichi 2011), the standard (unmodified) 1-halo term displays
unphysical behaviour at very large scales. In short, the 1-halo term
becomes larger than that predicted by linear theory on very large
scales, because the halo model implicitly assumes that haloes are
randomly distributed on large scales when, in reality they are clus-
tered and distributed more smoothly than random. Following Mead
et al. (2015) (see their section 3.2.2), we truncate the 1-halo term on
large scales using:

Δ
′2
1h =

[
1 − 𝑒−(𝑘/𝑘∗)

2 ]
Δ21h . (16)

This ad-hoc correction suppresses 1-halo power at scales 𝑘 <∼ 𝑘∗.
Mead et al. find the value of 𝑘∗ depends on the 1D linear-theory
displacement variance as 𝑘∗ = 0.548𝜎−1

v,d (𝑧).
In addition to the above modifications, Mead et al. (2015) (see also

Mead et al. 2020, 2021) consider a number of other modifications of
the halo model designed to provide a better fit to the non-linear mat-
ter power spectra of cosmological simulations. While allowing for
extra degrees of freedom does allow the halo model to provide an im-
proved fit to the simulations, one could argue that in doing so we are
sacrificing the physical intuitiveness of the model for new parameters
whose interpretation is ambiguous.Whether these parameters should
depend on baryon physics or cosmology is also unclear. Therefore, as

discussed in the Introduction, we take a different approach and simply
evaluate the accuracy of the standard (unmodified, modulo that men-
tioned above) halo model and assess to what extent it can be reliably
applied in this era of precision large-scale structure cosmology.

2.5 BAHAMAS simulations

To test the accuracy of the halo model, we employ the BAHAMAS
suite of cosmological hydrodynamical simulations (McCarthy et al.
2017, 2018), as well as their collisionless (DM-only) counterparts.
Most of the BAHAMAS runs consist of 400Mpcℎ−1 comoving on a
side, periodic boxes containing 2 × 10243 particles. For the fiducial
WMAP9 run from McCarthy et al. (2017) that we use, the dark
matter particle mass is 3.85× 109M� ℎ−1 and the initial gas mass is
7.66 × 108 M� ℎ−1.
The Boltzmann code CAMB (Lewis et al. (2000), version April

2014) was used to compute the transfer functions which were sup-
plied to a modified version of the N-GenIC14 code to create the
initial conditions, at a starting redshift of 𝑧 = 127. The N-GenIC
code was modified to include second-order Lagrangian Perturbation
Theory (2LPT) and support for massive neutrinos, although note
that most of our tests use the fiducial BAHAMAS simulation from
McCarthy et al. (2017) which has massless neutrinos and a WMAP9
maximum-likelihood cosmology (Hinshaw et al. 2013).
The BAHAMAS simulations were run with the Lagrangian

TreePM-SPH code GADGET-3 (Springel 2005). Subgrid physics de-
veloped for the OWLS project (Overwhelmingly Large Simulations
Schaye et al. 2010; Le Brun et al. 2014) was included in the hydrody-
namical simulations, specifically prescriptions for metal-dependent
radiative cooling, star formation, stellar evolution, chemical enrich-
ment, stellar feedback, and black hole growth and AGN feedback
(see Schaye et al. 2010 and references therein). While in OWLS
(and cosmo-OWLS) no attempt was made to calibrate the feedback
parameters to reproduce observations, the approach of BAHAMAS
was to explicitly calibrate the efficiencies of the stellar and AGN
feedback to reproduce the local (𝑧 ≈ 0) galaxy stellar mass function
and the gas fractions of galaxy groups and clusters. The objective in
doing so was to ensure that the most massive haloes (massive galax-
ies up to clusters), which contribute the most to the matter power
spectrum (van Daalen & Schaye 2015; Mead et al. 2020), have the
correct baryon fractions. van Daalen et al. (2020) have shown that
the baryon fraction on the group scale (𝑀 ∼ 1014M� ℎ−1) is the key
quantity in determining the impact of baryon physics on the matter
power spectrum.
A standard Friend-Of-Friends (hereafter FOF) algorithm with a

linking length of 𝑏 = 0.2 times the mean interparticle separation
is run to identify FOF haloes, from which we calculate the halo
mass function and the mean matter density profiles (see Section 3).
Note that because we first identify haloes with a FOF algorithm and
then compute their SO masses, haloes cannot overlap spatially. For
each FOF halo, we extract all of the particles in a sphere of radius
5𝑅200,crit centred on the most bound particle for calculation of the
density profiles. In practice, the outer radius we use for the density
profiles depends on the adopted halo mass definition, but our choice
for storing the particles around haloes is conservatively large.
While we use a fiducialWMAP9 cosmology to test the halomodel,

we note that the BAHAMAS simulations also contain extensions to
the standard model, including massive neutrinos (Mummery et al.
2017), a running of the scalar spectral index (Stafford et al. 2020a,b)

14 https://github.com/sbird/S-GenIC
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and dynamical dark energy (Pfeifer et al. 2020). In future work, we
will explore whether our findings here also extend to these ‘non-
standard’ cosmologies.
We will refer to the full hydrodynamics case as AGN and the

collisionless case asDM-only, and we consider the total matter (dark
matter+baryons) power spectrum.

3 INFORMING THE HALO MODEL WITH BAHAMAS

In this section we extract the ‘ingredients’ necessary to evaluate the
halo model (namely the matter density profiles and the halo mass
function) from the BAHAMAS simulations.

3.1 Matter density profiles

Here we describe our procedure for creating stacked total mass den-
sity profiles from BAHAMAS for use in the halo model. We select
FOF haloes of mass 1011 < 𝑀Δ [M� ℎ−1] ≈ 5 × 1015 and from
0 ≤ 𝑧 ≤ 3, where the halo mass, 𝑀Δ, is defined according to one
of the four mass definitions that we present below (see Table 1). We
adopt a (logarithmic) halo mass bin width of 𝑑 log10 𝑀 = 0.125. We
extract all of the particles belonging to all of the haloes in a given
mass bin, depositing them into ≈ 150 spherical shells (scaled by 𝑅Δ
and centred by the halo centre of potential), logarithmically-spaced
from 10−3𝑅Δ to 𝑅Δ, whereΔ is generalised to cover the four different
mass definitions that we explore (see Table 1). For a given radial bin,
we compute the mass-weighted mean radius:

𝑟𝑤 =
Σ𝑖𝑚𝑖𝑟𝑖

Σ𝑖𝑚𝑖
. (17)

Note that we are able to reach such small inner radii (10−3𝑅Δ)
because we are considering all the particles in many haloes stacked
together. Note also that for the lowest mass haloes we consider that
10−3𝑅Δ can actually probe scales below the softening length of
the simulations (4 pkpc ℎ−1), but this does not effect our ability to
evaluate the consistency of the halo model, since the softening will
also effect the power spectrum, 𝑃(𝑘), in the same way.
As already noted, we will use both the tabulated density profiles

directly and parametric fits to those profiles, using anEinasto form.To
allow for potential halo mass and redshift dependencies of the three
main parameters in the Einasto profile ( 𝑓0, 𝐴 and 𝛼, see eqn. 6), we
model them with a simple power law dependence on both quantities,
for example:

𝑓0 (𝑀, 𝑧) = 𝑓0,int

(
𝑀

𝑀ref

) 𝑓m

(1 + 𝑧) 𝑓𝑧 , (18)

where𝑀ref is a referencemass (or pivot point) used for normalisation
of the function, which we adopt as 1013 M� ℎ−1.
We determine the best-fit parameters using a nonlinear least-

squares Levenberg-Marquardt approach (Markwardt 2009) with the
IDL routines CURVEFIT and MPCURVEFIT using the partial deriva-
tives with respect to each parameter to help the convergence of the
fit. We simultaneously fit to the stacked density profiles over the full
range of radial bins, halo mass bins, and redshifts described above.
Note that since a given radial bin typically contains large numbers
of particles, the Poisson uncertainties are typically negligibly small.
Therefore, we simply neglect these uncertainties, giving equal weight
to each radial bin in the fit.
In Table 1 we present the best-fit parameters for the DM-only and

AGN total matter density profiles for the four different mass defini-
tions. We note that there are likely to be large degeneracies between
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Figure 1. Stacked matter density (solid curves) and best-fit Einasto (dashed
curves) profiles for the collisionless (DM-only) case for three halo mass bins
at three different redshifts (𝑧 = [0, 1, 2]) for the Δ = 200𝑚 mass definition.
In the top panels we show the profiles normalised by Δ𝜌 and multiplied by
(𝑟/𝑅Δ)2 to reduce the dynamic range. The bottom panels show the residuals
of the best-fit Einasto profiles with respect to the stacked simulation pro-
files. We have chosen the mass bins log10 (M) = [12.8, 13.5, 13.8]M� ℎ−1

because they are well represented in all three redshifts. The fitting functions
reproduce the simulation profiles to typically 10% accuracy over the full range
of masses and redshifts and a radial range of ≈ [0.02 − 0.8]𝑅Δ.

the derived parameters, but this is generally unimportant for our
purposes, since we only require that the function provides a good
fit to the simulated profiles for the range of halo masses, radii, and
redshifts that we consider. Because of the degeneracies between the
parameters, the best-fit values themselves do not necessarily have
important physical significance.
In Table 1 we have introduced the four different halo mass def-

initions that we consider, corresponding to spherical overdensities
of either 200 or 500 times either the critical or mean density of the
universe at a given redshift, where the critical density, 𝜌crit (𝑧), is
defined as 3𝐻 (𝑧)2/8𝜋𝐺 and the mean density is just Ω𝑚 (𝑧)𝜌crit (𝑧).
We fit to the mass density profiles normalised by either 𝜌mean or
𝜌crit (depending on the halo mass definition), thus the density nor-
malisation parameter 𝑓0 is dimensionless, and the radial bins are
normalised by the corresponding overdensity radius. For a given
halo mass definition, 𝑀Δ, we fit the profiles out to 𝑅Δ.
As an example of the profiles and the quality of the Einasto

fits to them, in Figs. 1 and 2 we present, at three different
redshifts (𝑧 = [0, 1, 2]) and in three mass bins (log10 (𝑀) =

[12.8, 13.5, 13.8]M� ℎ−1), the stacked total matter density profiles
for the DM-only and AGN cases. We show the case for a spherical
overdensity of Δ = 200𝑚, but find similar agreement for the other
mass definitions. The density has been normalised by 200𝜌 and mul-
tiplied by (𝑟/𝑅Δ=200𝑚)2 in order to reduce the dynamic range of
the plots. In the bottom panels, we present the residuals, defined as
(𝜌fit − 𝜌sim)/𝜌sim with a shaded area that represents the ± 10% (0.1)
agreement. For the DM-only case we have used different shades of
blue while for the AGN case different shades of red.
The figures show that in both cases the generalised Einasto profiles

can reproduce (typically within 10%) the radial trend of the profiles
from ≈ [0.02 − 0.8]𝑅Δ at all redshifts for the DM-only case. There
are some systematic features in the AGN cases at radii below ≈
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Overdensity Type 𝑀ref [M� ℎ−1 ] 𝑓0,int [×109 ] 𝑓𝑚 𝑓𝑧 𝐴0 𝑎𝑚 𝑎𝑧 𝛼0 𝛼𝑚 𝛼𝑧

Δ = 200𝑚 DM-only 1013 0.3474 −0.0056 −1.804 14.01 −0.00475 −0.1891 0.298 −0.0182 −0.053
Δ = 200𝑐 DM-only 1013 0.2295 0.2633 −1.196 12.04 0.01594 −0.0062 0.255 −0.0522 −0.161
Δ = 500𝑚 DM-only 1013 0.3395 0.0025 −1.624 12.77 −0.00371 −0.1861 0.242 −0.0218 −0.096
Δ = 500𝑐 DM-only 1013 0.1354 0.3520 −0.869 10.42 0.0259 0.0213 0.279 −0.0711 −0.239

Δ = 200𝑚 AGN 1013 0.5083 −0.099 0.642 16.63 −0.0115 0.006 0.189 −0.019 −0.025
Δ = 200𝑐 AGN 1013 14504.6 −0.263 −1.76 25.29 −0.0147 −0.023 0.105 −0.032 −0.104
Δ = 500𝑚 AGN 1013 12491.88 −0.316 −2.342 25.52 −0.0173 −0.118 0.104 −0.027 −0.115
Δ = 500𝑐 AGN 1013 35538.27 −0.287 −1.793 25.09 −0.0152 −0.025 0.096 −0.033 −0.126

Table 1. Best-fit Einasto parameter values (see eqns. 6 and 18) describing the density profiles of the BAHAMAS DM-only and AGN cases for four different halo
mass definitions.

10 1

100

/
(r/

R
)2

z=0

log10(M) = 12.8M h 1

log10(M) = 13.5M h 1

log10(M) = 13.8M h 1

z=1 Data
Fit

z=2

10 2 10 1 100

0.2

0.0

0.2

(
Fi

t
)/

±0.1

10 1 100

r/R
10 1 100

Figure 2. Same as Fig. 1 but for the hydrodynamical (AGN) case. The strong
deviations between the best-fit Einasto profile and the simulation profiles at
low halomasses and small radii is due to the increasing importance of the cen-
tral galaxy. As we show later (see Fig. 10) this has a small but non-negligible
effect on the non-linear power spectrum at small scales of 𝑘 >∼ 5[ℎ/Mpc].

0.07 𝑅Δ. This increase in density is due to the stellar component15
(and associated adiabatic contraction of the dark matter), particularly
prominent in the innermost parts of relatively low-mass haloes. This
effect will also be slightly visible in the matter power spectrum
analysis later for the differences with using the fitting profiles. We
also see that in the innermost radial bins at higher redshift the profiles
are more noisy, which is just due to the expected lower abundance of
very massive haloes at higher redshifts.

3.2 Halo mass function

We now consider the halo mass function (HMF) from BAHAMAS
as input for the halo model. At a given redshift and for a given halo

15 In principle one could include an additional component to the parametric
model to better fit the inner regions. Indeed, this would be recommended
when modelling real data. However, since we also evaluate the halo model
using the tabulated profiles directly from the simulations, we can still assess
the accuracy of the halo model without including such a component. By
comparing the tabulated and parametric versions, we can directly assess the
impact of neglecting an additional component designed to better capture the
central galaxy.

20

15

lo
g 1

0

= 200m

z=0
z=1
z=2

= 500m

Tinker
BAHAMAS

0.5

0.0

0.5

B
/

T
1

20

15
lo

g 1
0

= 200c = 500c

1011 1012 1013 1014 1015

M [M h 1]
0.5

0.0

0.5

B
/

T
1

Scatter

1012 1013 1014 1015

M [M h 1]

Figure 3.Halomass function (HMF,Φ) comparison between the BAHAMAS
DM-only case (Φ𝐵 , orange curves) and the Tinker et al. (2008) prediction
(Φ𝑇 , blue curves) at three different redshifts (solid, dashed and dotted curves)
for four different halo mass definition. In the smaller subpanels residuals be-
tween the BAHAMAS HMF and the Tinker HMF are shown. The shaded
orange regions represent the Poisson errors for the BAHAMAS HMFs. Dif-
ferences between the Tinker and BAHAMAS mass functions are likely due
to cosmic variance and Poisson uncertainties at the high-mass end and finite
resolution and differences in how haloes are identified (FOF for BAHAMAS
and spherical overdensity for Tinker) at the low-mass end (see text). We ex-
amine how differences in the mass functions affect the resulting non-linear
power spectrum in Fig. 8.

.

mass definition (spherical overdensity), we compute the halo mass
function of FOF haloes using a bin width of log10 (𝑀) = 0.0625, over
a mass range 1011−5×1015M� ℎ−1. To compute the mass function,
𝑑𝑛/𝑑𝑀 , we simply count the number of FOF haloes in a given bin
and divide by the bin width and simulation comoving volume.
We present in Fig. 3 a comparison between the HMF from the

BAHAMAS DM-only run with the Tinker et al. (2008) prediction
for the four different mass definitions at three different redshifts. We
have computed the Tinker HMF using the Colossus Toolkit (Diemer
2018) 16.
We see that there is generally good agreement between the two

independent mass functions. In the small panels below the main ones
we present the residuals between the BAHAMAS and the Tinker

16 https://bdiemer.bitbucket.io/colossus/
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HMFs for the three different redshifts (with the same lines). Small
differences can be seen at high masses which are likely a result
of cosmic variance and relatively poor statistics (Poisson errors) in
the BAHAMAS volume. Regardless of the origin of the differences,
they should be taken into account evaluating the internal accuracy
of the halo model. For example, if through cosmic variance the
BAHAMAS volume has somewhat more very massive clusters than
expected on the basis of the Tinker HMF, this could also affect the
overall non-linear 𝑃(𝑘) of the simulation. Therefore, by using the
actual HMF from BAHAMAS we can more accurately test the halo
model formalism.
At lowmasses (∼ 1011M� ℎ−1), the BAHAMAS simulations pre-

dict a lower abundance of haloes compared to the Tinker expectation.
This is likely due to two effects: finite resolution of the BAHAMAS
simulations and differences in the way haloes are identified in BA-
HAMAS and Tinker et al. (2008). There is a clear resolution effect
at masses below ≈ 3 × 1011 M� ℎ−1, where the BAHAMAS HMF
stops increasing with decreasing mass. Here the simulations are ap-
proaching the 20 particle limit imposed on FOF groups. At somewhat
higher masses, there is still a deficit with respect to the Tinker pre-
diction of ≈ 10 − 20%. This is likely due to differences in the way
haloes are identified. For BAHAMAS, haloes are identified with a
FOF algorithm after which spherical overdensity masses are com-
puted, whereas Tinker et al. (2008) identify haloes using the spher-
ical overdensity method and haloes are allowed to partially overlap.
Consequently, more intermediate/low mass haloes are identified in
the vicinity of larger haloes using the spherical overdensity method,
whereas a FOF algorithm will combine haloes into larger group in
which they are sufficiently close to one another. These differences
have been previously discussed in the literature (e.g., Bocquet et al.
2020) so we will not discuss them further here. However, such differ-
ences in the HMFs will propagate through the halo model and affect
the predictions for 𝑃(𝑘). We will show that the differences in the
HMFs will impact the 𝑃(𝑘) predictions only slightly at low redshift,
but play a relatively larger role at higher redshift (𝑧 ≈ 2).

3.2.1 HMF baryon correction

In the HMF comparison presented above, we examined the DM-
only run from BAHAMAS and compared it with the predictions of
Tinker et al. (2008), who used a large suite of collisionless (dark
matter-only) cosmological simulations to calibrate an approximately
universal form (to ∼ 10% accuracy) for the HMF (see eqn. 7). Thus,
the comparison was a consistent one. However, as several authors
have shown previously, the halo profiles and HMFs can be affected
by baryonic processes such as feedback from supernovae and AGN
(Cui et al. 2014; Velliscig et al. 2014; Bocquet et al. 2016; Mummery
et al. 2017; Pfeifer et al. 2020; Stafford et al. 2020a), with effects as
large as 20% in the HMF which is large enough to have a non-
negligible impact on cosmological parameter inference (Cusworth
et al. 2014; Castro et al. 2021; Debackere et al. 2021).
To evaluate the impact of baryons on the HMF and how these

translate to predictions of the halo model, we extend the formal-
ism presented in Velliscig et al. (2014) to correct the masses and
HMFs. We explore two different ways of accounting for baryons
in the HMF. In the first case, we can exploit the fact that the DM-
only and AGN runs have the same phases in the initial conditions,
making it possible to match haloes between the two runs (using the
unique particle IDs) on a halo-by-halo basis, as done previously in
Pfeifer et al. (2020) and Stafford et al. (2020a) when evaluating both
the impact of baryons and cosmological extensions (dynamical dark
energy and a running of scalar spectral index, respectively) on the
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Figure 4. Fractional change in halo mass (eqn. 19) between the BAHAMAS
AGN and DM-onlysimulations as a function of DM-only halo mass. Shown
are the median (top panel) and mean (bottom panel) trends, along with the
best-fit functions (eqn. 20), for the Δ = 200𝑚 case at three different redshifts.
The scatter, shown in shaded grey area, represents the 68% confidence region
at 𝑧 = 0.

HMF in BAHAMAS.With this approach, one can directly determine
how the halo mass has changed as a result of baryonic processes. In
the second approach, one can simply compare the HMFs of the DM-
only and AGN runs, effectively computing the ratio of abundances in
a given halo mass bin (e.g., Velliscig et al. 2014). By default we use
the halo matching scheme to derive a HMF correction factor , but
we have also explored an analysis using the HMF ratio method. In
short, while both approaches yield similar results, we find the halo
matching scheme to be more accurate (less noisy).
In Fig. 4 we present a comparison between the mean and median

values of Δmass at three different redshifts for the Δ = 200𝑚 case,
where Δmass is the fractional difference in the halo mass between the
AGN and DM-only runs:

Δmass =

(
𝑀AGN − 𝑀DM-Only

𝑀DM-Only

)
. (19)

Consistent with previous studies, we find that the halo masses are
most strongly affected on the scale of galaxy groups, where AGN
feedback is able to expel a large fraction of the baryons. At higher
masses (above a few 1014 M� ℎ−1) the increased binding energy of
the haloes prevents significant gas expulsion, while at lower masses
(<∼ 10

12M� ℎ−1) AGN feedback is generally not yet active and stellar
(supernova) feedback is not sufficiently energetic to eject a significant
amount of baryons.
Following Velliscig et al. (2014), we model the change in halo

mass (mass shift) due to baryons with the following functional form:

Δmass (𝑀DM-Only) =
𝐴

cosh[log10 (𝑀DM-Only)]

+ 𝐵

1 + exp
[
− log10 (𝑀DM-Only)−𝐶

𝐷

] (20)

Note that in eqn. 20 we have added a hyperbolic cosine term that
allows the function to better reproduce the increase in Δmass towards
low halo masses. In addition, to account for the redshift evolution of
the halo mass shift, we allow the four parameters (A,B,C and D) to
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Table 2. Best-fit parameters for the baryonic mass correction (eqn. 20) for the
median and mean fractional changes in halo mass, Δmass. In Fig. 4 we show
the comparison between our best-fit models and the median and mean trends.

ΔMean ΔMedian
P 𝑎0 𝑎𝑧 𝑎0 𝑎𝑧

A 22291.3 0.260 19539.1 0.417
B −0.327 0.289 −0.312 0.414
C −13.574 −0.033 −13.552 −0.037
D −0.395 0.218 −0.417 0.216

have power law redshift dependencies, e.g.,:

𝐴(𝑧) = 𝑎0 (1 + 𝑧)𝑎𝑧 . (21)

In Fig. 4 we see that the fitting functions can reproduce the halo
mass shift for all mass bins (> 3 × 1011 M� ℎ−1) and at the three
different redshifts shown.Note that the lower limit of 3×1011M� ℎ−1

is dictated by the minimum number of matched most-bound particles
(50) that we require to match haloes between two BAHAMAS runs.
Overall, the accuracy of the best-fit functions to the mean and

the median values of Δmass is better than 10% in all mass bins and
redshifts sampled. In Table 2 we present the best-fit parameter values
for the mean and median versions of the mass shift Δmass.
As an aside, we find that the effects of baryons on the HMF (and

presumably density profiles as well) are slightly cosmology depen-
dent. We have determined this by testing our model against a BA-
HAMAS Planck13 run that has a different universal baryon fraction
( 𝑓 Planck

𝑏
= 0.15433) and we have found that the first parameter A

depends upon this as

𝐴 = 𝐴WMAP9

(
1 + 𝑓𝑏

𝑓WMAP9
𝑏

)−0.219
, (22)

where 𝐴WMAP9 is the value presented in Table 2. This cosmology
correction works for both the mean and median Δmass results.
While the halo mass correction procedure derived above could be

applied on a halo-by-halo basis to the BAHAMAS DM-only run to
derive a baryon-corrected HMF, such a procedure would generally
not be possible for published HMFs based on collisionless simula-
tions, since the individual halomasses (halo catalogues) are generally
not available. Thus, we wish to derive a simple correction factor that
can be applied to existing collisionless HMFs in the literature.
To do this, we first shift the halo mass bins from a collisionless

HMF (in this case theBAHAMASDM-onlyHMF) using the baryonic
correction procedure above. We use the mean correction function
in Table 2. This creates a new set of mass bins. We next rescale
the abundances (Φ) by the relative ratio between the DM-only and
AGN mass bins as:

𝑑𝑛

𝑑𝑀AGN
=

𝑑𝑛

𝑑𝑀DM-only

(
𝑀DM-only,𝑖 − 𝑀DM-only,𝑖−1 ≡ 𝑑𝑀DM-only

)(
𝑀AGN,𝑖 − 𝑀AGN,𝑖−1 ≡ 𝑑𝑀AGN

) ,

(23)

where 𝑀AGN is the corrected halo mass, derived using the (uncor-
rected) mass, 𝑀DM-only, and eqns. 19 and 20, and 𝑖 refers to the
ith mass bin. Essentially, this procedure works because the number
density of haloes, 𝑛, does not change as a result of feedback/baryons,
rather these result in a change in halo mass. But a change in mass
means that both the x-axis (halo mass) and the y-axis (𝜙 ≡ 𝑑𝑛/𝑑𝑀 ,
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through the change in 𝑑𝑀) change due to baryons17. With this pro-
cedure, we can correct existing HMFs derived from collisionless
simulations for the presence of baryons.
In Fig. 5 we present the results of the application of this method

to the BAHAMAS DM-only HMF and compare it with the actual
BAHAMAS AGN HMF. We can see that the method is accurate
to typically 5%. Larger deviations are present at the very highest
masses, which are due to poor sampling statistics.
In Fig. 6 we present a comparison between the baryon-corrected

Tinker HMFs and the BAHAMAS AGN HMFs, as we have done for

17 An underlying assumption of this procedure is that the rank ordering of
haloes by mass does not change through the inclusion of baryons.
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the DM-only case in Fig. 3. We can see that the method applied also
provides good results in this case.
In this section we have explained how we extract the ingredients

necessary from the BAHAMAS simulations to be able to evaluate
the halo model. We have shown the accuracy with which the Einasto
fits reproduce the stacked density profiles computed from the simula-
tions. We have also examined the differences in the HMFs, deriving
a baryon correction factor that can be applied to HMFs from col-
lisionless simulations. Below we apply these quantities to calculate
the non-linear power spectrum, 𝑃(𝑘), using the halo model and we
compare this with the actual power spectrum measured from the
BAHAMAS simulations.

4 MATTER POWER SPECTRUM

4.1 Collisionless matter power spectrum

In this section we present a comparison of the (BAHAMAS-
informed) halo model predictions for the non-linear matter power
spectrum alongside power spectrum predictions from the BA-
HAMAS simulations themselves. We also show linear theory pre-
diction computed by CAMB (Lewis & Challinor 2006) and the non-
linear power spectrum from the (collisionless)Halofit package (Taka-
hashi et al. 2012). Note that Halofit provides a non-linear correction
factor for the linear power spectrum, which Takahashi et al. (2012)
have derived by fitting to a large suite of collisionless simulations
spanning a wide range of cosmologies.
We begin by presenting the results for the collisionless (DM-only)

case. As already discussed, we explore different versions of the halo
model, where, for the density profiles we use either the tabulated pro-
files extracted directly from the simulations or a smooth parametric
fit to them and for the halo mass function we use either the HMF di-
rectly from the simulations or forms from the literature (specifically
Tinker et al. 2008). We also explore the impact of changing the halo
mass definition, by varying the overdensity criteria used to define a
halo’s mass and its radial extent.
In Fig. 7 we present the comparison between the halo model pre-

diction (black solid line), its 1-halo and 2-halo terms (grey lines)
and the BAHAMAS power spectrum (orange diamonds), as well as
the predictions of linear theory and Halofit (dotted and dashed blue
curves, respectively). Note that for this comparison, the halo model
is computed using the tabulated mass density profiles (as opposed
to Einasto fits to them) and the HMF directly from the BAHAMAS
DM-only run. In the bottom panel we present the ratio of the differ-
ent cases with respect to the BAHAMAS-informed halo. The BA-
HAMAS simulation power spectrum is computed using the software
NBodykit18(Hand et al. 2018).
Qualitatively speaking, the halo model does capture the general

trends of the simulation non-linear power spectrum well, including
the shape of the power spectrum from the simulations (top panel).
For example, there is a strong increase in power with respect to linear
theory on small scales, as expected. Focusing on the bottom panel for
a quantitative comparison, we can see that the halo model predictions
match those of linear theory at large scales to percent level accuracy,
which is by construction, after accounting for haloes that lie below
the mass resolution limit of the simulations (see eqn. 13). The most
challenging region is between 0.1<∼ 𝑘 <∼ 2 ℎ/Mpc which corresponds
to the transition region between the 1-halo and 2-halo terms. Here
the halo model’s prediction can deviate from the simulations by up

18 https://nbodykit.readthedocs.io/en/latest/
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Figure 7. Top: Matter power spectra comparison for the collisionless case.
The solid black curve represents the halo model computed with the stacked
density profiles and the BAHAMAS HMF, while the dashed and dot-dashed
grey curves represent the 1-halo and 2-halo terms separately. The power
spectrum from the BAHAMAS DM-only run is represented with orange
symbols. The dashed and dotted blue curves represent the non-linear power
spectrum predicted by Halofit and the linear matter power spectrum predicted
by CAMB. The vertical dotted line represents 0.5 times the Nyquist frequency
of the BAHAMAS simulation volume. Bottom: Ratios with respect to the
halo model. On very large scales, the halo model reproduces linear theory
to percent level accuracy, by construction. On small scales, the 1-halo term
dominates and reproduces the simulated (BAHAMAS) power spectrum to
typically 5% accuracy. In the 1-halo/2-halo transition region, the halo model
predicts up to 20% less power than in the BAHAMAS simulations.

to 15%. This is qualitatively consistent with previous findings (e.g.,
Giocoli et al. 2010; Massara et al. 2014; Mead et al. 2015; Chen &
Afshordi 2020; Voivodic et al. 2020), although note that our test is
more stringent due to the fact that we are using the same simulation
to inform and then test the halo model.
At small scales we see that the level of agreement improves again

(< 5% at 1 < 𝑘 [ℎ/Mpc] < 4) between the BAHAMAS-informed
halo model predictions and the simulations and theoretical predic-
tions. However, the error increases again at still smaller scales. While
the error increases as theNyquist frequency is approached19 (see dot-
ted vertical line), the fact that the Halofit prediction is very similar
to that of BAHAMAS suggests that the error is not solely due to
aliasing effects in the simulation 𝑃(𝑘). Further tests exploring the
minimum radius and halo mass, as well as the the radial and mass
binning strategies, in the halo model show the results to be numeri-
cally robust. Plausible physical explanations for the deviation at very
small scales include differences in the clustering of substructures
compared to the smooth dark matter profile, asphericity of the mass
distribution, and intrinsic scatter in the mass density profiles.
In Fig. 8 we explore the effects of changing the halo mass defi-

nition, the profiles (tabulated vs. parametric fit), and the HMF (BA-
HAMAS vs. Tinker et al. 2008) at a number of different redshifts.
There are four sets of plots, corresponding to the four halo mass def-
initions that we explore (Δ = 200𝑚, 500𝑚 and Δ = 200𝑐, 500𝑐). The
top row of panels in each plot set correspond to the case where the

19 The Nyquist frequency is defined as a𝑦 = 2𝜋𝑁cell/𝐿Box where 𝑁cell is
the number of cells used in the Fourier transform (to the one-third power)
when evaluating 𝑃 (𝑘) and 𝐿Box is the box size.
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Figure 8. Residual plots between the matter power spectrum and the halo model predictions at three different redshifts for the four different mass definition as
follows: top-left Δ = 200𝑚, top-right Δ = 500𝑚, bottom-left Δ = 200𝑐 and bottom-right Δ = 500𝑐. The top (bottom) row of panels in each plot set correspond
to the case where the tabulated profiles directly from the simulations (Einasto fits to) are used in the halo model. The orange (blue) curves correspond to the case
where we use the BAHAMASDM-only simulation (Tinker) HMF. We compare against linear theory predictions using CAMB (dotted curves) and the non-linear
Halofit prediction (dashed curves) and BAHAMAS DM-only simulation (solid curves). The vertical dotted line represents 0.5 times the Nyquist frequency of
the BAHAMAS simulation volume. All models recover the large-scale limit by construction while the 1-halo/2-halo transition region is (at best, corresponding
to the Δ = 200𝑚 case) recovered to 10-15% accuracy. In general, the accuracy decreases with decreasing radial extent of the haloes (due to changing halo mass
definition, see text) and increasing redshift.

tabulated profiles directly from the simulations are used in the halo
model, whereas the bottom row of panels use the Einasto fit to the
density profiles. The blue curves correspond to the case where we use
the Tinker HMF, whereas the orange curves used the BAHAMAS
DM-only simulation HMF. Note that here we present residuals, de-
fined as [𝑃(𝑘) − 𝑃HM (𝑘)]/𝑃(𝑘) (where 𝑃HM (𝑘) is the halo model
prediction), whereas in the bottom panel of Fig. 7 we showed a simple
ratio.

We focus first on the top left set of plots, corresponding to a
spherical overdensity case of Δ = 200𝑚. Scanning from left to right,
it is clear to see the halo model increasingly struggles to capture the
1-halo/2-halo transition region with increasing redshift. This is true
regardless of which mass function we use (BAHAMAS or Tinker)
or whether we use tabulated or fitted density profiles (top vs. bottom
rows). Interestingly, examining the other spherical overdensity cases
(see the other three sets of plots in Fig. 8), it appears that when the

overdensity criteria are defined with respect to the mean background
density, the precision of the model worsens with increasing redshift
while the accuracy is mostly independent of redshift when the critical
density is used. The fact that there is a relation between the accuracy
of the halo model and the mass definition was also hinted at in
Mead et al. (2021), where they identified differences between using
Δ = 200𝑚 and Δ = 200𝑐.

Comparing the top and bottom rows of the top left set of plots, there
are no significant differences in the ability of the halomodel to recover
the simulation 𝑃(𝑘). This implies that the Einasto form we have used
reproduces the simulated matter density profiles sufficiently well for
the purposes of predicting 𝑃(𝑘), since the result does not change
when we use tabulated profiles directly (top row) vs. the Einasto
fitting function (bottom row).

Comparing the solid orange (BAHAMAS HMF) and solid blue
(Tinker HMF) curves, we see that using the actual BAHAMAS sim-
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ulation HMF results in an improved agreement between the halo
model and the simulation 𝑃(𝑘), particularly at higher redshifts. Thus,
the halo model is more accurate than what might have been inferred
using a generic halo mass function to test it.
Scanning between the four sets of plots, another trend that is

clearly visible is that changing the halo mass definition has a sig-
nificant impact on the accuracy of the halo model with respect to
the simulations. The change in the halo mass itself is not what is
driving this trend: since we essentially integrate over all haloes, how
we label their masses should not matter. However, by changing the
halo mass definition, we are also changing the radial extent (size)
of a halo (given the spherical overdensity definition) and this clearly
will impact where the 1-halo and 2-halo terms intersect, due to the
change in the extent of the 1-halo term. These results are consistent
with the findings of van Daalen & Schaye (2015), who showed the
importance of the radial selection of particles on the resulting power
spectrum of cosmological simulations (see figure 3 of that study).
We find that the larger the radial extent of the halo (noting that at

𝑧 = 0, 𝑅200𝑚 is the largest and 𝑅500𝑐 is the smallest) the better the
halo model is able to capture the 1-halo/2-halo transition region in
the simulations. This suggests that one way to help further improve
the halo model is to radially extend the 1-halo term. For example,
even if the halo mass function and bias are defined with respect to
some standard choice of overdensity (e.g., Δ = 200𝑐, 𝑚), the profiles
could, for example, be extended to several times the corresponding
spherical overdensity radius, with the optimum extent determined by
fitting to the simulation 𝑃(𝑘). However, whether such an approach
is strongly cosmology dependent is unclear. Alternatively, it may
be possible to adopt a consistent mass and radius definition but
simply lower the overdensity value (e.g., Δ = 100) or adopt an
alternative physical mass/radius scale such as the ‘splashback’ radius
(e.g., Diemer & Kravtsov 2015; Diemer 2020). Finally, including
an accurate treatment of non-linear bias should also help to better
recover the transition region (Mead & Verde 2021). We will examine
these possibilities in future work.

4.2 Matter power spectrum including baryon physics

In Fig. 9 we present an analogous plot as in Fig. 7, where the green di-
amonds represent the power spectrum from theBAHAMASAGN run
and in the bottom panel the various ratios are now with respect to
the baryon version of the halo model. Note that the baryon version of
the halo model corresponds to either using tabulated profiles directly
from the AGN run or an Einasto fit to them, as well as using either the
BAHAMAS AGN HMF or a Tinker HMF with a baryon correction
applied. For Fig. 9 we use the tabulated profiles and HMF from the
BAHAMAS AGN run.
As in the case of the DM-only version, our baryon halo model

prescription recovers the linear regime (𝑘 < 0.1ℎ/Mpc) to better
than percent level accuracy, by construction. Consistent with the
collisionless comparison, the agreement is worst at the 1-halo/2-halo
transition region, deviating from the simulation prediction by up to
20%. The agreement improves again at smaller scales, though still
deviates by ≈10%.
In Fig. 10 we show the residuals plots in the same way we have

presented for the DM-only case, with the stacked and fitted density
profiles and two different forms for the HMFs, at different redshifts
(𝑧 = [0, 1, 2]), and for the four different halo mass definitions. The
grey curves correspond to the cases using the baryon-corrected Tin-
ker HMF and the red curves correspond to the cases using the BA-
HAMAS AGN HMF. Overall, we find very similar trends to those
presented in Fig. 8 for the DM-only case. Specifically, the mass def-
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halo model (i.e., using the density profiles and HMF from the BAHAMAS
AGN run). The level of agreement between the baryonic halo model and the
hydrodynamical simulations is similar to that seen in the comparison of the
collisionless halo model and collisionless simulations in Fig. 7.

inition that works best is again Δ = 200𝑚, which can recover the
1-halo/2-halo transition region to 20% at 𝑧 = 0 and ≈ 35% at 𝑧 = 1.
The 1-halo region (𝑘 > 2 ℎ/Mpc) is generally recovered to 10%
at 𝑧 = 0 independent of the choice of halo mass definition, HMF,
and non-parametric vs. parametric profiles. At higher redshifts, the
discrepancy with respect to the simulations increases for both the
1-halo/2-halo transition region and in the deep non-linear (1-halo)
region..
Upon closer inspection, it is apparent in some cases that there is a

difference at very small scales (high 𝑘 values) between the accuracy
of the halo model when using either the parametric (Einasto) or
tabulated mass density profiles. For example, at 𝑧 = 0 in either the
Δ = 200𝑚 or Δ = 200𝑐 cases, the residuals increase towards smaller
scales when using the tabulated profiles, whereas for the parametric
case they are approximately independent of 𝑘 scale. We attribute this
difference in behaviour to the inability of the Einasto form to fully
capture the behaviour of the density profiles at small scales, due to the
increasing importance of the central galaxy (see Fig. 2). Thus, in this
case, using the more accurate tabulated density profiles demonstrates
that the halo model is actually less accurate in reproducing the non-
linear power spectrum on small scales.
Overall, therefore, the trends in the accuracy of the baryon ver-

sion of the halo model are very similar to those for the collisionless
version, when the models are compared to the hydrodynamical and
collisionless BAHAMAS simulations respectively. In particular, we
find that the absolute accuracy is worse at the 1-halo/2-halo transi-
tion and typically worsens at higher redshifts when the halo mass
definition is defined with respect to the mean background density.
The choice of halo mass definition is also important. Given that the
trends are very similar between the baryon and collisionless cases,
it raises the interesting question of whether the halo model would
actually be better suited at predicting the ratio (or suppression) of
the matter power spectrum due to baryons, as opposed to predicting
the absolute 𝑃(𝑘). We explore this possibility below.
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Figure 10. Residuals plots between the baryonic matter power spectrum and the halo model predictions at three different redshifts for the four different mass
definition following the same format as the DM-only companion plot in Fig. 8. We also show, instead of the Halofit prediction, the difference between the
baryonic halo model compared the BAHAMAS DM-only 𝑃 (𝑘) (dashed curve). The overall trends and level of agreement are very similar to those found for the
DM-only case, though there are differences in detail (see text).

4.3 Matter power spectrum suppression

We now explore the halo model predictions for the matter power
spectrum suppression, sometimes also referred to as the “suppression
factor”. There are many recent studies of the suppression factor using
cosmological hydrodynamical simulations in the literature (e.g., van
Daalen et al. 2011, 2020; Schneider & Teyssier 2015; Schneider et al.
2019; Chisari et al. 2019; Debackere et al. 2020). Here we explore
the accuracy with which the halo model can recover the suppression
of the matter power spectrum in the BAHAMAS simulations.

In Fig. 11 we show the suppression effect of the baryons with
respect to theDM-only simulations, where the suppression is defined
simply as 𝑆(𝑘) ≡ 𝑃AGN (𝑘)/𝑃DM (𝑘). The structure of the plots
is similar to the previous ones that we have shown for the power
spectra comparison (Figs. 8 and 10) but in this case we show the
suppression power spectra (top panels) and the ratio between the
BAHAMAS results and the halo model results (bottom panels). We
show in solid (dashed) curves the predictions using the tabulated
(fitted) density profiles. In orange we show the predictions using the

BAHAMAS HMFs and in grey using the Tinker HMFs (with the
baryonic correction applied to the AGN cases).

On a qualitative level, we can see that the ratio of the baryon
to collisionless halo models (top row of panels in each plot set)
has a ‘spoon’-like form that closely mimics that found by taking
the ratio of power spectra from hydrodynamical and collisionless
simulations. Examining the ratio of power spectrum suppression of
the simulations with respect to that from the halo model (i.e., a ratio
of ratios, in the bottom row of panels of each plot set in Fig. 11),
we can also see that there is no evidence of an issue of near the 1-
halo/2-halo transition region, nor of any particular systematic issues
as a function of halo mass definition or redshift. Slight differences
exist depending on which set of density profiles we use (tabulated
vs. parametric), but it is nevertheless abundantly clear that the halo
model formalism is considerably more accurate in predicting the
matter power spectrum suppression factor, as opposed the absolute
𝑃(𝑘). Typically, we find that the ratio of halo models is accurate at
the ≈2-3 percent level.
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Figure 11.Matter power spectrum suppression plots between the total matter power spectrum and the DM-only power spectra predictions using the halo model
results at three different redshifts for the four different mass definition following the same structure as the DM-only and AGN plots Fig. 8 and Fig. 10. In the
bottom panel we show the accuracy of our prediction with the ratio between the simulation expected results and the halo model prediction highlighting the 2%
difference using dashed black curves. The BAHAMAS predictions are shown in solid black curve. We show the prediction with BAHAMAS HMFs in solid
orange curves while in grey we show the Tinker prediction, in dashed curves we show the case using the fit density profiles while in solid curves the stacked
density profiles. The halo model reproduces the simulated suppression factor to typically a few percent accuracy, independent of details such as the halo mass
definition.

5 SUMMARY AND CONCLUSIONS

In this study we have assessed the accuracy of the halo model to
predict the non-linear matter power spectrum, which is the basis of
many large-scale structure cosmological probes. The advantages of
the halo model are its speed, flexibility, and its intuitive physical
nature. However, its accuracy in predicting the non-linear power
spectrum needs to be carefully assessed and here we have posed
a simple question: how well does the halo model predict the non-
linear power spectrum, 𝑃(𝑘), from a cosmological simulation when
the ingredients of the halo model (namely the halo mass function
and mass density profiles) are extracted from the same simulation?
Although the question is simple, the test is in fact a demanding one,
since once the mass function and density profiles (and cosmology)
are specified, there are no free parameters in the standard halo model.
We briefly summarise the main results below:

• We have computed the stacked (mean) total mass density pro-

files in bins of halo mass and redshift for the BAHAMAS DM-
only and AGN simulations (see Figs. 1 and 2, respectively) and pro-
vided Einasto profile fits to these profiles (see eqn. 6 and Table 1).

• Using theBAHAMASsimulations,we have derived a correction
to the halo mass function that encapsulates the presence and impact
of baryons on haloes. This correction works for every overdensity
and up to 𝑧 = 2 with an accuracy better than 5% (see Fig. 4 and
eqn. 20).

• Using density profiles and halo mass functions extracted from
theBAHAMAS simulations, we have calculated the non-linear power
spectrum, 𝑃(𝑘), using the standard halo model. Qualitatively speak-
ing, the standard halo model reproduces the power spectrum in both
the collisionless and baryon cases (see Fig. 7 and Fig. 9, respectively)
we have considered, correctly capturing both the large-scale, linear
limit and the deep non-linear regime.

• In detail, we find that the halo model struggles to quantitatively
reproduce the simulation power spectrum on intermediate scales
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(0.1<∼ 𝑘 [ℎ/Mpc] <∼ 5) that mark the transition from the so-called 2-
halo term (the clustering of nearby, correlated haloes) to the 1-halo
term (themass density distribution inside a single halo). For example,
at 𝑧 = 0 and adopting a halo mass defined with respect to 200 times
the mean background density, the halo model predicts a 𝑃(𝑘) that is
systematically lower than predicted by the cosmological simulations
by up to 15-20% (see Figs. 8 and 10). This result follows previous
works (e.g. Massara et al. 2014; Voivodic et al. 2020) but narrows
down the source of uncertainties by using the halo mass function and
density profiles directly from the simulations.

• We have shown that the choice of halo mass definition (defined
with respect to the critical or mean background density and the
choice of overdensity) has a significant impact on the 1-halo/2-halo
transition region offset. This effect is due to the change in the radial
extent of the haloes depending on the mass definition, with larger
radial extents (lower overdensities) generally resulting in an improved
match between the halo model and the simulations.

• The 1-halo dominated region is recovered to 5% at 𝑧 = 0 and
better than 10% for all mass definitions, although the accuracy de-
creases at higher redshifts.

• While the standard (unmodified) halo model cannot predict the
absolute power spectrum to better than 15%accuracy on intermediate
scales (at best), we have shown that these systematic errors largely
cancel when considering the ratio of the baryon to collisionless cases.
Typically, the halo model can reproduce the suppression seen in the
simulations to a few percent accuracy, independent of the details such
as the halo mass definition (Fig. 11).

One of the key findings of our study is that the accuracy of the halo
model in reproducing the simulations is strongly affected by the halo
mass definition, through its impact on the radial extent of haloes. In
essence, adopting higher overdensities implies smaller radial extents
(for a given mass) which effectively confines the 1-halo contribu-
tion to smaller scales, resulting in lower power at the 1-halo/2-halo
transition region and poorer agreement with the simulations. One
possibility is to simply radially extend the profiles associated with a
given mass definition. Alternatively, one can retain the link between
the halo mass and radius and simply adopt a lower overdensity, or
perhaps another physical scale (at typically low overdensities) such
as the splashback radius. In addition, Mead & Verde (2021) have
shown that accounting for non-linear bias in the 2-halo term also
helps to mitigate the error in the transition region. Note that the stan-
dard halo model assumes a linear bias which is independent of scale,
but in principle we expect the clustering to be scale-dependent on
quasi-linear scales.
The other major finding of our study is that the ratio of power

spectra (baryon case to collisionless case) can bemuchmore robustly
predicted with the standard halo model than can the absolute power
spectra. Interestingly, previous studies have similarly concluded that
the effects of including massive neutrinos or of altering the nature
of dark energy or gravity on the matter power spectrum are also
most reliably captured with the halo model in terms of ratios (e.g.,
Schmidt et al. 2010; Mead 2017; Cataneo et al. 2019, 2020; Bose
et al. 2021). In these studies, the ratio is sometimes referred to as
the ‘response’ or the ‘reaction’ to a cosmological change. Our results
regarding the ratio of the baryon and collisionless halo models could
therefore be termed as a ‘baryon response’ or ‘baryon reaction’. One
possibility, is to use the halomodel to predict the baryon response and
combine this with other methods for computing the absolute power
spectrum in the collisionless limit. Fast and accurate emulators based
on large suites of collisionless simulations are now readily available
in an expanding cosmological parameter space (e.g., Lawrence et al.

2017; Euclid Collaboration et al. 2021). Combining these with the
flexible, physically-motivated halo model to account for the presence
of baryons is a novel, interesting prospect and one that differs from
existing methods to account for baryons, including those that use the
halo model to compute the absolute power spectrum in the presence
of baryons (HMcode; Mead et al. 2015, 2021), use analytic prescrip-
tions for directly modifying the outputs of collisionless simulations
such as the ‘baryonification’ approach (Schneider & Teyssier 2015;
Angulo et al. 2020; Aricò et al. 2020), or that use full cosmological
hydrodynamical simulations directly (BAHAMAS; McCarthy et al.
2017).
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