10,876 research outputs found

    Motorway Traffic Flow Prediction using Advanced Deep Learning

    Full text link
    © 2019 IEEE. Congestion prediction represents a major priority for traffic management centres around the world to ensure timely incident response handling. The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, however this is a challenging task due to inter-dependencies of traffic flow both in time and space. Recently, deep learning techniques have shown significant prediction improvements over traditional models, however open questions remain around their applicability, accuracy and parameter tuning. This paper proposes an advanced deep learning framework for simultaneously predicting the traffic flow on a large number of monitoring stations along a highly circulated motorway in Sydney, Australia, including exit and entry loop count stations, and over varying training and prediction time horizons. The spatial and temporal features extracted from the 36.34 million data points are used in various deep learning architectures that exploit their spatial structure (convolutional neuronal networks), their temporal dynamics (recurrent neuronal networks), or both through a hybrid spatio-temporal modelling (CNN-LSTM). We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future

    Characterization of a dual-beam, dual-camera optical imaging polarimeter

    Get PDF
    Polarization plays an important role in various time-domain astrophysics to understand the magnetic fields, geometry, and environments of spatially unresolved variable sources. In this paper we present the results of laboratory and on-sky testing of a novel dual-beam, dual-camera optical imaging polarimeter (MOPTOP) exploiting high sensitivity, low-noise CMOS technology and designed to monitor variable and transient sources with low systematic errors and high sensitivity. We present a data reduction algorithm that corrects for sensitivity variations between the cameras on a source-by-source basis. Using our data reduction algorithm, we show that our dual-beam, dual-camera technique delivers the benefits of low and stable instrumental polarization (<0.05<0.05\% for lab data and <0.25<0.25\% for on sky data) and high throughput while avoiding the additional sky brightness and image overlap problems associated with dual-beam, single-camera polarimeters

    Ultracompact quantum splitter of degenerate photon pairs

    Full text link
    Integrated sources of indistinguishable photons have attracted a lot of attention because of their applications in quantum communication and optical quantum computing. Here, we demonstrate an ultra-compact quantum splitter for degenerate single photons based on a monolithic chip incorporating Sagnac loop and a micro-ring resonator with a footprint of 0.011 mm2, generating and deterministically splitting indistinguishable photon pairs using time-reversed Hong-Ou-Mandel interference. The ring resonator provides enhanced photon generation rate, and the Sagnac loop ensures the photons travel through equal path lengths and interfere with the correct phase to enable the reversed HOM effect to take place. In the experiment, we observed a HOM dip visibility of 94.5 +- 3.3 %, indicating the photons generated by the degenerate single photon source are in a suitable state for further integration with other components for quantum applications, such as controlled-NOT gates

    Corticomuscular coherence analysis on the static and dynamic tasks of hand movement

    Get PDF
    The synchronization between cortical motor and muscular activity can be revealed by corticomuscular coherence (CMC). This paper designed two neuromuscular activity paradigms of hand movement, i.e. static gripping task and dynamic finger moving task. The electroencephalography (EEG) from C3 and C4 channels and the surface electromyography (sEMG) from the flexor digitorum superficialis were collected simultaneously from 4 male and 4 female right-handed healthy young subjects. For the static griping task, CMCs during low-level forces under 4%, 8%, and 16% MVC (Maximal Voluntary Contraction) were investigated by using magnitude squared coherence calculated from EEGs and sEMGs. For the dynamic finger moving task, the time-frequency domain analysis was used to process dynamic data of temporary action in a period of 2 seconds and get the latency of the maximum CMC. The results of this study indicated that the force increasing within the low-level range in static task is associated with the enhanced CMC. The maximum amplitude of CMC occurred about 0.3–0.5s after the onset of hand movement. Subjects showed significant CMC performance both in static and dynamic task of hand movement.published_or_final_versio

    Entropy Projection Curved Gabor with Random Forest and SVM for Face Recognition

    Get PDF
    In this work, we propose a workflow for face recognition under occlusion using the entropy projection from the curved Gabor filter, and create a representative and compact features vector that describes a face. Despite the reduced vector obtained by the entropy projection, it still presents opportunity for further dimensionality reduction. Therefore, we use a Random Forest classifier as an attribute selector, providing a 97% reduction of the original vector while keeping suitable accuracy. A set of experiments using three public image databases: AR Face, Extended Yale B with occlusion and FERET illustrates the proposed methodology, evaluated using the SVM classifier. The results obtained in the experiments show promising results when compared to the available approaches in the literature, obtaining 98.05% accuracy for the complete AR Face, 97.26% for FERET and 81.66% with Yale with 50% occlusion

    <i>Schizosaccharomyces pombe</i> Pol II transcription elongation factor ELL functions as part of a rudimentary super elongation complex

    Get PDF
    ELL family transcription factors activate the overall rate of RNA polymerase II (Pol II) transcription elongation by binding directly to Pol II and suppressing its tendency to pause. In metazoa, ELL regulates Pol II transcription elongation as part of a large multisubunit complex referred to as the Super Elongation Complex (SEC), which includes P-TEFb and EAF, AF9 or ENL, and an AFF family protein. Although orthologs of ELL and EAF have been identified in lower eukaryotes including Schizosaccharomyces pombe, it has been unclear whether SEClike complexes function in lower eukaryotes. In this report, we describe isolation from S. pombe of an ELL-containing complex with features of a rudimentary SEC. This complex includes S. pombe Ell1, Eaf1, and a previously uncharacterized protein we designate Ell1 binding protein 1 (Ebp1), which is distantly related to metazoan AFF family members. Like the metazoan SEC, this S. pombe ELL complex appears to function broadly in Pol II transcription. Interestingly, it appears to have a particularly important role in regulating genes involved in cell separation

    Prediction Models for Water Erosion Risk Management: A Review

    Get PDF
    In order to estimate the potential soil erosion hazard of an area, erosion prediction models are needed. Various models have been used by researchers, which ranges from mathematical and conceptual simple approaches to complex models that try to include the complexities of the real world. Six (6) models are reviewed in relation to their suitability for use. The KINEROS, CORINE and EUROSEM were best suited for water erosion risk prediction in cultivated soils. On the other hand, the KINEROS, PESERA, CORINE and EUROSEM were found to be applicable in all sectors (Agronomy, water resources management and road construction) highlighted. The GLASOD had the least applicability with respect to this study.Keywords: Water Erosion, sediment transport models, Model structure and suitability for us

    Brezin-Gross-Witten model as "pure gauge" limit of Selberg integrals

    Get PDF
    The AGT relation identifies the Nekrasov functions for various N=2 SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (beta-ensemble) representations the latter being polylinear combinations of Selberg integrals. The "pure gauge" limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.Comment: 21 page

    Flavor SU(3) symmetry and QCD factorization in BPPB \to PP and PVPV decays

    Full text link
    Using flavor SU(3) symmetry, we perform a model-independent analysis of charmless Bˉu,d(Bˉs)PP, PV\bar B_{u,d} (\bar B_s) \to PP, ~PV decays. All the relevant topological diagrams, including the presumably subleading diagrams, such as the QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be important in understanding the data for penguin-dominated decay modes. In this work we make efforts to bridge the (model-independent but less quantitative) topological diagram or flavor SU(3) approach and the (quantitative but somewhat model-dependent) QCD factorization (QCDF) approach in these decays, by explicitly showing how to translate each flavor SU(3) amplitude into the corresponding terms in the QCDF framework. After estimating each flavor SU(3) amplitude numerically using QCDF, we discuss various physical consequences, including SU(3) breaking effects and some useful SU(3) relations among decay amplitudes of BˉsPV\bar B_s \to PV and BˉdPV\bar B_d \to PV.Comment: 47 pages, 3 figures, 28 table
    corecore