156 research outputs found
To rescue a star
Massless neutrinos are exchanged in a neutron star, leading to long range
interactions. Many body forces of this type follow and we resum them. Their net
contribution to the total energy is negligible as compared to the star mass.
The stability of the star is not in danger, contrary to recent assertions.Comment: 10 pages, Latex2e, two figure
Finite-size effects on multibody neutrino exchange
The effect of multibody massless neutrino exchanges between neutrons inside a
finite-size neutron star is studied. We use an effective Lagrangian, which
incorporates the effect of the neutrons on the neutrinos. Following Schwinger,
it is shown that the total interaction energy density is computed by comparing
the zero point energy of the neutrino sea with and without the star. It has
already been shown that in an infinite-size star the total energy due to
neutrino exchange vanishes exactly. The opposite claim that massless neutrino
exchange would produce a huge energy is due to an improper summation of an
infrared-divergent quantity. The same vanishing of the total energy has been
proved exactly in the case of a finite star in a one-dimensional toy model.
Here we study the three-dimensional case. We first consider the effect of a
sharp star border, assumed to be a plane. We find that there is a non-
vanishing of the zero point energy density difference between the inside and
the outside due to the refraction index at the border and the consequent
non-penetrating waves. An analytical and numerical calculation for the case of
a spherical star with a sharp border confirms that the preceding border effect
is the dominant one. The total result is shown to be infrared-safe, thus
confirming that there is no need to assume a neutrino mass. The ultraviolet
cut-offs, which correspond in some sense to the matching of the effective
theory with the exact one, are discussed. Finally the energy due to long
distance neutrino exchange is of the order of , i.e. negligible with respect to the neutron mass density.Comment: Latex file (Revtex), 34 pages, 8 postscripted figure
Coherent Neutrino Interactions in a Dense Medium
Motivated by the effect of matter on neutrino oscillations (the MSW effect)
we study in more detail the propagation of neutrinos in a dense medium. The
dispersion relation for massive neutrinos in a medium is known to have a
minimum at nonzero momentum p \sim (G_F\rho)/\sqrt{2}. We study in detail the
origin and consequences of this dispersion relation for both Dirac and Majorana
neutrinos both in a toy model with only neutral currents and a single neutrino
flavour and in a realistic "Standard Model" with two neutrino flavours. We find
that for a range of neutrino momenta near the minimum of the dispersion
relation, Dirac neutrinos are trapped by their coherent interactions with the
medium. This effect does not lead to the trapping of Majorana neutrinos.Comment: 28 pages, 6 figures, Latex; minor changes, one reference added;
version to appear in Phys. Rev.
Tomography of quantum dots in a non-hermitian photonic chip
© 2019 IEEE. Quantum optical information systems offer the potential for secure communication and fast quantum computation. To fully characterise a quantum optical system one has to use quantum tomography [1]. Integration of quantum optics onto photonic chips provides advantages such as miniaturisation and stability, and also significantly improves quantum tomography using both re-configurable [2], and more recently, simpler static designs [3,4]. These on-chip designs have, so far, only used probabilistic single photon sources. Here we are working towards quantum tomography using a true deterministic source - a quantum dot. The scheme of the proposed experiment is shown in Fig. 1A. So far we have fabricated and characterised the performance of an InGaAs quantum dot monolithically integrated into a microlens [5], and completed the design, fabrication and classical characterisation of a photonic chip for quantum tomography
Tomography of quantum dots in a non-hermitian photonic chip
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. Quantum optical information systems offer the potential for secure communication and fast quantum computation. To fully characterise a quantum optical system one has to use quantum tomography.1 The integration of quantum optics onto photonic chips provides advantages such as miniaturisation and stability, significantly improving quantum tomography using both re-configurable, and more recently, simpler static designs. These on-chip designs have, so far, only used probabilistic single photon sources. Here we are working towards quantum tomography using a true deterministic source-an InGaAs quantum dot
Neutrino ground state in a dense star
It has recently been argued that long range forces due to the exchange of
massless neutrinos give rise to a very large self-energy in a dense,
finite-ranged, weakly-charged medium. Such an effect, if real, would
destabilize a neutron star. To address this issue we have studied the related
problem of a massless neutrino field in the presence of an external, static
electroweak potential of finite range. To be precise, we have computed to one
loop the exact vacuum energy for the case of a spherical square well potential
of depth alpha and radius R. For small wells, the vacuum energy is reliably
determined by a perturbative expansion in the external potential. For large
wells, however, the perturbative expansion breaks down. A manifestation of this
breakdown is that the vacuum carries a non-zero neutrino charge. The energy and
neutrino charge of the ground state are, to a good approximation for large
wells, those of a neutrino condensate with chemical potential mu=alpha. Our
results demonstrate explicitly that long-range forces due to the exchange of
massless neutrinos do not threaten the stability of neutron stars.Comment: 27 pages, 7 figures, revtex; several typos corrected; a few
references added; title changed slightly; includes a "note added in proof";
version to appear in Phys. Rev.
Linking species concepts to natural product discovery in the post-genomic era
A widely accepted species concept for bacteria has yet to be established. As a result, species designations are inconsistently applied and tied to what can be considered arbitrary metrics. Increasing access to DNA sequence data and clear evidence that bacterial genomes are dynamic entities that include large numbers of horizontally acquired genes have added a new level of insight to the ongoing species concept debate. Despite uncertainties over how to apply species concepts to bacteria, there is clear evidence that sequence-based approaches can be used to resolve cohesive groups that maintain the properties of species. This cohesion is clearly evidenced in the genus Salinispora, where three species have been discerned despite very close relationships based on 16S rRNA sequence analysis. The major phenotypic differences among the three species are associated with secondary metabolite production, which occurs in species-specific patterns. These patterns are maintained on a global basis and provide evidence that secondary metabolites have important ecological functions. These patterns also suggest that an effective strategy for natural product discovery is to target the cultivation of new Salinispora taxa. Alternatively, bioinformatic analyses of biosynthetic genes provide opportunities to predict secondary metabolite novelty and reduce the redundant isolation of well-known metabolites. Although much remains to be learned about the evolutionary relationships among bacteria and how fundamental units of diversity can be resolved, genus and species descriptions remain the most effective method of scientific communication
Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila
Wide-field motion-sensitive neurons in the lobula plate (lobula plate tangential cells, LPTCs) of the fly have been studied for decades. However, it has never been conclusively shown which cells constitute their major presynaptic elements. LPTCs are supposed to be rendered directionally selective by integrating excitatory as well as inhibitory input from many local motion detectors. Based on their stratification in the different layers of the lobula plate, the columnar cells T4 and T5 are likely candidates to provide some of this input. To study their role in motion detection, we performed whole-cell recordings from LPTCs in Drosophila with T4 and T5 cells blocked using two different genetically encoded tools. In these flies, motion responses were abolished, while flicker responses largely remained. We thus demonstrate that T4 and T5 cells indeed represent those columnar cells that provide directionally selective motion information to LPTCs. Contrary to previous assumptions, flicker responses seem to be largely mediated by a third, independent pathway. This work thus represents a further step towards elucidating the complete motion detection circuitry of the fly
Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk
Coding variants represent many of the strongest associations between genotype and phenotype; however, they exhibit interindividual differences in effect, termed 'variable penetrance'. Here, we study how cis-regulatory variation modifies the penetrance of coding variants. Using functional genomic and genetic data from the Genotype-Tissue Expression Project (GTEx), we observed that in the general population, purifying selection has depleted haplotype combinations predicted to increase pathogenic coding variant penetrance. Conversely, in cancer and autism patients, we observed an enrichment of penetrance increasing haplotype configurations for pathogenic variants in disease-implicated genes, providing evidence that regulatory haplotype configuration of coding variants affects disease risk. Finally, we experimentally validated this model by editing a Mendelian single-nucleotide polymorphism (SNP) using CRISPR/Cas9 on distinct expression haplotypes with the transcriptome as a phenotypic readout. Our results demonstrate that joint regulatory and coding variant effects are an important part of the genetic architecture of human traits and contribute to modified penetrance of disease-causing variants.Peer reviewe
Mechanism of subunit interaction at ketosynthase-dehydratase junctions in trans-AT polyketide synthases
Modular polyketide synthases (PKSs) produce numerous structurally complex natural products with diverse applications in medicine and agriculture. They typically consist of several multienzyme subunits that utilize structurally-defined docking domains (DDs) at their N- and C-termini to ensure correct assembly into functional multi-protein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-AT modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This involves direct interaction of a largely unstructured docking domain (DD) at the C-terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based cross-linking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene foot-printing and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity
- …