70 research outputs found
Socioeconomic status and prostate cancer incidence and mortality rates among the diverse population of California
The racial/ethnic disparities in prostate cancer rates are well documented, with the highest incidence and mortality rates observed among African-Americans followed by non-Hispanic Whites, Hispanics, and Asian/Pacific Islanders. Whether socioeconomic status (SES) can account for these differences in risk has been investigated in previous studies, but with conflicting results. Furthermore, previous studies have focused primarily on the differences between African-Americans and non-Hispanic Whites, and little is known for Hispanics and Asian/Pacific Islanders.
To further investigate the relationship between SES and prostate cancer among African-Americans, non-Hispanic Whites, Hispanics, and Asian/Pacific Islanders, we conducted a large population-based cross-sectional study of 98,484 incident prostate cancer cases and 8,997 prostate cancer deaths from California.
Data were abstracted from the California Cancer Registry, a population-based surveillance, epidemiology, and end results (SEER) registry. Each prostate cancer case and death was assigned a multidimensional neighborhood-SES index using the 2000 US Census data. SES quintile-specific prostate cancer incidence and mortality rates and rate ratios were estimated using SEER*Stat for each race/ethnicity categorized into 10-year age groups.
For prostate cancer incidence, we observed higher levels of SES to be significantly associated with increased risk of disease [SES Q1 vs. Q5: relative risk (RR) = 1.28; 95% confidence interval (CI): 1.25–1.30]. Among younger men (45–64 years), African-Americans had the highest incidence rates followed by non-Hispanic Whites, Hispanics, and Asian/Pacific Islanders for all SES levels. Yet, among older men (75–84 years) Hispanics, following African-Americans, displayed the second highest incidence rates of prostate cancer. For prostate cancer deaths, higher levels of SES were associated with lower mortality rates of prostate cancer deaths (SES Q1 vs. Q5: RR = 0.88; 95% CI: 0.92–0.94). African-Americans had a twofold to fivefold increased risk of prostate cancer deaths in comparison to non-Hispanic Whites across all levels of SES.
Our findings suggest that SES alone cannot account for the greater burden of prostate cancer among African-American men. In addition, incidence and mortality rates of prostate cancer display different age and racial/ethnic patterns across gradients of SES
The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.
p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface, which increases solar radiation absorption. This biological albedo-reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a radiative-transfer model, supervised classification of unmanned aerial vehicle (UAV) and satellite remote-sensing data, and runoff modelling to calculate biologically driven ice surface ablation. We demonstrate that algal growth led to an additional 4.4–6.0 Gt of runoff from bare ice in the south-western sector of the GrIS in summer 2017, representing 10 %–13 % of the total. In localized patches with high biomass accumulation, algae accelerated melting by up to 26.15±3.77 % (standard error, SE). The year 2017 was a high-albedo year, so we also extended our analysis to the particularly low-albedo 2016 melt season. The runoff from the south-western bare-ice zone attributed to algae was much higher in 2016 at 8.8–12.2 Gt, although the proportion of the total runoff contributed by algae was similar at 9 %–13 %. Across a 10 000 km2 area around our field site, algae covered similar proportions of the exposed bare ice zone in both years (57.99 % in 2016 and 58.89 % in 2017), but more of the algal ice was classed as “high biomass” in 2016 (8.35 %) than 2017 (2.54 %). This interannual comparison demonstrates a positive feedback where more widespread, higher-biomass algal blooms are expected to form in high-melt years where the winter snowpack retreats further and earlier, providing a larger area for bloom development and also enhancing the provision of nutrients and liquid water liberated from melting ice. Our analysis confirms the importance of this biological albedo feedback and that its omission from predictive models leads to the systematic underestimation of Greenland's future sea level contribution, especially because both the bare-ice zones available for algal colonization and the length of the biological growth season are set to expand in the future
Lifetime environmental tobacco smoke exposure and the risk of chronic obstructive pulmonary disease
BACKGROUND: Exposure to environmental tobacco smoke (ETS), which contains potent respiratory irritants, may lead to chronic airway inflammation and obstruction. Although ETS exposure appears to cause asthma in children and adults, its role in causing COPD has received limited attention in epidemiologic studies. METHODS: Using data from a population-based sample of 2,113 U.S. adults aged 55 to 75 years, we examined the association between lifetime ETS exposure and the risk of developing COPD. Participants were recruited from all 48 contiguous U.S. states by random digit dialing. Lifetime ETS exposure was ascertained by structured telephone interview. We used a standard epidemiologic approach to define COPD based on a self-reported physician diagnosis of chronic bronchitis, emphysema, or COPD. RESULTS: Higher cumulative lifetime home and work exposure were associated with a greater risk of COPD. The highest quartile of lifetime home ETS exposure was associated with a greater risk of COPD, controlling for age, sex, race, personal smoking history, educational attainment, marital status, and occupational exposure to vapors, gas, dusts, or fumes during the longest held job (OR 1.55; 95% CI 1.09 to 2.21). The highest quartile of lifetime workplace ETS exposure was also related to a greater risk of COPD (OR 1.36; 95% CI 1.002 to 1.84). The population attributable fraction was 11% for the highest quartile of home ETS exposure and 7% for work exposure. CONCLUSION: ETS exposure may be an important cause of COPD. Consequently, public policies aimed at preventing public smoking may reduce the burden of COPD-related death and disability, both by reducing direct smoking and ETS exposure
Domain Analysis Reveals That a Deubiquitinating Enzyme USP13 Performs Non-Activating Catalysis for Lys63-Linked Polyubiquitin
Deubiquitination is a reverse process of cellular ubiquitination important for many biological events. Ubiquitin (Ub)-specific protease 13 (USP13) is an ortholog of USP5 implicated in catalyzing hydrolysis of various Ub chains, but its enzymatic properties and catalytic regulation remain to be explored. Here we report studies of the roles of the Ub-binding domains of USP13 in regulatory catalysis by biochemical and NMR structural approaches. Our data demonstrate that USP13, distinct from USP5, exhibits a weak deubiquitinating activity preferring to Lys63-linked polyubiquitin (K63-polyUb) in a non-activation manner. The zinc finger (ZnF) domain of USP13 shares a similar fold with that of USP5, but it cannot bind with Ub, so that USP13 has lost its ability to be activated by free Ub. Substitution of the ZnF domain with that of USP5 confers USP13 the property of catalytic activation. The tandem Ub-associated (UBA) domains of USP13 can bind with different types of diUb but preferentially with K63-linked, providing a possible explanation for the weak activity preferring to K63-polyUb. USP13 can also regulate the protein level of CD3δ in cells, probably depending on its weak deubiquitinating activity and the Ub-binding properties of the UBA domains. Thus, the non-activating catalysis of USP13 for K63-polyUb chains implies that it may function differently from USP5 in cellular deubiquitination processes
Microarray analysis identifies a set of CXCR3 and CCR2 ligand chemokines as early IFNβ-responsive genes in peripheral blood lymphocytes in vitro: an implication for IFNβ-related adverse effects in multiple sclerosis
BACKGROUND: A substantial proportion of multiple sclerosis (MS) patients discontinue interferon-beta (IFNβ) treatment due to various adverse effects, most of which emerge at the early phase after initiation of the treatment and then diminish with time. At present, the molecular mechanism underlying IFNβ-related adverse effects remains largely unknown. The aim of this study is to identify a comprehensive list of early IFNβ-responsive genes (IRGs) in peripheral blood mononuclear cells (PBMC) that may play a key role in induction of adverse effects. METHODS: Total RNA of PBMC exposed to 50 ng/ml recombinant human IFNβ for 3 to 24 hours in vitro was processed for cDNA microarray analysis, followed by quantitative real-time RT-PCR analysis. RESULTS: Among 1,258 genes on the array, IFNβ elevated the expression of 107 and 87 genes, while it reduced the expression of 22 and 23 genes at 3 and 24 hours, respectively. Upregulated IRGs were categorized into conventional IFN-response markers, components of IFN-signaling pathways, chemokines, cytokines, growth factors, and their receptors, regulators of apoptosis, DNA damage, and cell cycle, heat shock proteins, and costimulatory and adhesion molecules. IFNβ markedly upregulated CXCR3 ligand chemokines (SCYB11, SCYB10 and SCYB9) chiefly active on effector T helper type 1 (Th1) T cells, and CCR2 ligand chemokines (SCYA8 and SCYA2) effective on monocytes, whereas it downregulated CXCR2 ligand chemokines (SCYB2, SCYB1 and IL8) primarily active on neutrophils. CONCLUSION: IFNβ immediately induces a burst of gene expression of proinflammatory chemokines in vitro that have potential relevance to IFNβ-related early adverse effects in MS patients in vivo
Recommended from our members
Using a community-based definition of poverty for targeting poor households for premium subsidies in the context of a community health insurance in Burkina Faso
Background: One of the biggest challenges in subsidizing premiums of poor households for community health insurance is the identification and selection of these households. Generally, poverty assessments in developing countries are based on monetary terms. The household is regarded as poor if its income or consumption is lower than a predefined poverty cut-off. These measures fail to recognize the multi-dimensional character of poverty, ignoring community members? perception and understanding of poverty, leaving them voiceless and powerless in the identification process. Realizing this, the steering committee of Nouna's health insurance devised a method to involve community members to better define `perceived? poverty, using this as a key element for the poor selection. The community-identified poor were then used to effectively target premium subsidies for the insurance scheme.
Methods: The study was conducted in the Nouna's Health District located in northwest Burkina Faso. Participants in each village were selected to take part in focus-group discussions (FGD) organized in 41 villages and 7 sectors of Nouna's town to discuss criteria and perceptions of poverty. The discussions were audio recorded, transcribed and analyzed in French using the software NVivo 9.
Results: From the FGD on poverty and the subjective definitions and perceptions of the community members, we found that poverty was mainly seen as scarcity of basic needs, vulnerability, deprivation of capacities, powerlessness, voicelessness, indecent living conditions, and absence of social capital and community networks for support in times of need. Criteria and poverty groups as described by community members can be used to identify poor who can then be targeted for subsidies.
Conclusion: Policies targeting the poorest require the establishment of effective selection strategies. These policies are well-conditioned by proper identification of the poor people. Community perceptions and criteria of poverty are grounded in reality, to better appreciate the issue. It is crucial to take these perceptions into account in undertaking community development actions which target the poor. For most community-based health insurance schemes with limited financial resources, using a community-based definition of poverty in the targeting of the poorest might be a less costly alternative
Glacier algae accelerate melt rates on the western Greenland Ice Sheet
Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface that increase solar radiation absorption. This biological albedo reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a novel radiative transfer model, supervised classification of UAV and satellite remote sensing data and runoff modelling to calculate biologically-driven ice surface ablation and compare it to the albedo reducing effects of local mineral dust. We demonstrate that algal growth led to an additional 5.5–8.0 Gt of runoff from the western sector of the GrIS in summer 2016, representing 6–9 % of the total. Our analysis confirms the importance of the biological albedo feedback and that its omission from predictive models leads to the systematic underestimation of Greenland’s future sea level contribution, especially because both the bare ice zones available for algal colonization and the length of the active growth season are set to expand in the future
The ubiquitin proteasome system in neuropathology
The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed
- …