2,485 research outputs found

    Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning

    Get PDF
    As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability

    SIMPROT: Using an empirically determined indel distribution in simulations of protein evolution

    Get PDF
    BACKGROUND: General protein evolution models help determine the baseline expectations for the evolution of sequences, and they have been extensively useful in sequence analysis and for the computer simulation of artificial sequence data sets. RESULTS: We have developed a new method of simulating protein sequence evolution, including insertion and deletion (indel) events in addition to amino-acid substitutions. The simulation generates both the simulated sequence family and a true sequence alignment that captures the evolutionary relationships between amino acids from different sequences. Our statistical model for indel evolution is based on the empirical indel distribution determined by Qian and Goldstein. We have parameterized this distribution so that it applies to sequences diverged by varying evolutionary times and generalized it to provide flexibility in simulation conditions. Our method uses a Monte-Carlo simulation strategy, and has been implemented in a C++ program named Simprot. CONCLUSION: Simprot will be useful for testing methods of analysis of protein sequence families particularly alignment methods, phylogenetic tree building, detection of recombination and horizontal gene transfer, and homology detection, where knowing the true course of sequence evolution is essential

    Celebrating 10 Years of the Subseasonal to Seasonal Prediction Project and Looking to the Future

    Get PDF
    WWRP/WCRP S2S Summit 2023 What: More than 190 scientists from 29 countries met to celebrate 10 years of the Subseasonal to Seasonal (S2S) Prediction project and look to the future of S2S prediction. When: 3–7 July 2023 Where: University of Reading, United KingdomWe wish to thank all the presenters at the workshop. The organizers of the workshop are grateful for the support provided by WMO, WWRP, WCRP, University of Reading, and the EU H2020 CONFESS Project (https://confess-h2020.eu/)."Article signat per 32 autors/es: S. J. Woolnough, F. Vitart, A. W. Robertson, C. A. S. Coelho, R. Lee,H. Lin, A. Kumar, C. Stan, M. Balmaseda, N. Caltabiano, M. Yamaguchi, H. Afargan-Gerstman, V. L. Boult, F. M. De Andrade, D. Büeler, A. Carreric, D. A. Campos Diaz, J. Day, J. Dorrington, M. Feldmann, J. C. Furtado, C. M. Grams, R. Koster, L. Hirons, V. S. Indasi, P. Jadhav, Y. Liu, P. Nying’uro, C. D. Roberts, E. Rouges, and J. Ryu"Postprint (author's final draft

    Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo

    Get PDF
    The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity

    The Seroepidemiology of Haemophilus influenzae Type B Prior to Introduction of an Immunization Programme in Kathmandu, Nepal.

    Get PDF
    Haemophilus influenzae type b (Hib) is now recognized as an important pathogen in Asia. To evaluate disease susceptibility, and as a marker of Hib transmission before routine immunization was introduced in Kathmandu, 71 participants aged 7 months-77 years were recruited and 15 cord blood samples were collected for analysis of anti-polyribosylribitol phosphate antibody levels by enzyme-linked immunosorbent assay. Only 20% of children under 5 years old had levels considered protective (>0.15 µg/ml), rising to 83% of 15-54 year-olds. Prior to introduction of Hib vaccine in Kathmandu, the majority of young children were susceptible to disease

    Stereotactic body radiotherapy for primary prostate cancer

    Get PDF
    Prostate cancer is the most common non-cutaneous cancer in males. There are a number of options for patients with localized early stage disease, including active surveillance for low-risk disease, surgery, brachytherapy, and external beam radiotherapy. Increasingly, external beam radiotherapy, in the form of dose-escalated and moderately hypofractionated regimens, is being utilized in prostate cancer, with randomized evidence to support their use. Stereotactic body radiotherapy, which is a form of extreme hypofractionation, delivered with high precision and conformality typically over 1 to 5 fractions, offers a more contemporary approach with several advantages including being non-invasive, cost-effective, convenient for patients, and potentially improving patient access. In fact, one study has estimated that if half of the patients currently eligible for conventional fractionated radiotherapy in the United States were treated instead with stereotactic body radiotherapy, this would result in a total cost savings of US$250 million per year. There is also a strong radiobiological rationale to support its use, with prostate cancer believed to have a low alpha/beta ratio and therefore being preferentially sensitive to larger fraction sizes. To date, there are no published randomized trials reporting on the comparative efficacy of stereotactic body radiotherapy compared to alternative treatment modalities, although multiple randomized trials are currently accruing. Yet, early results from the randomized phase III study of HYPOfractionated RadioTherapy of intermediate risk localized Prostate Cancer (HYPO-RT-PC) trial, as well as multiple single-arm phase I/II trials, indicate low rates of late adverse effects with this approach. In patients with low-to intermediate-risk disease, excellent biochemical relapse-free survival outcomes have been reported, albeit with relatively short median follow-up times. These promising early results, coupled with the enormous potential cost savings and implications for resource availability, suggest that stereotactic body radiotherapy will take center stage in the treatment of prostate cancer in the years to come

    Adsorption and Thermal Decomposition of Triphenyl Bismuth on Silicon (001)

    Get PDF
    We investigate the adsorption and thermal decomposition of triphenyl bismuth (TPB) on the silicon (001) surface using atomic-resolution scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, and density functional theory calculations. Our results show that the adsorption of TPB at room temperature creates both bismuth–silicon and phenyl–silicon bonds. Annealing above room temperature leads to increased chemical interactions between the phenyl groups and the silicon surface, followed by phenyl detachment and bismuth subsurface migration. The thermal decomposition of the carbon fragments leads to the formation of silicon carbide at the surface. This chemical understanding of the process allows for controlled bismuth introduction into the near surface of silicon and opens pathways for ultra-shallow doping approaches
    • …
    corecore