171 research outputs found

    Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures

    No full text
    Broken symmetries induce strong even-order nonlinear optical responses in materials and at interfaces. Unlike conventional covalently bonded nonlinear crystals, van der Waals (vdW) heterostructures feature layers that can be stacked at arbitrary angles, giving complete control over the presence or lack of inversion symmetry at a crystal interface. Here, we report highly tunable second harmonic generation (SHG) from nanomechanically rotatable stacks of bulk hexagonal boron nitride (BN) crystals and introduce the term twistoptics to describe studies of optical properties in twistable vdW systems. By suppressing residual bulk effects, we observe SHG intensity modulated by a factor of more than 50, and polarization patterns determined by moiré interface symmetry. Last, we demonstrate greatly enhanced conversion efficiency in vdW vertical superlattice structures with multiple symmetry-broken interfaces. Our study paves the way for compact twistoptics architectures aimed at efficient tunable frequency conversion and demonstrates SHG as a robust probe of buried vdW interfaces

    Approximate Solutions to Fractional Subdiffusion Equations: The heat-balance integral method

    Full text link
    The work presents integral solutions of the fractional subdiffusion equation by an integral method, as an alternative approach to the solutions employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer). The prescribed profile satisfies the boundary conditions imposed by the boundary layer that allows its coefficients to be expressed through its depth as unique parameter. The integral approach to the fractional subdiffusion equation suggests a replacement of the real distribution function by the approximate profile. The solution was performed with Riemann -Liouville time-fractional derivative since the integral approach avoids the definition of the initial value of the time-derivative required by the Laplace transformed equations and leading to a transition to Caputo derivatives. The method is demonstrated by solutions to two simple fractional subdiffusion equations (Dirichlet problems): 1) Time-Fractional Diffusion Equation, and 2) Time-Fractional Drift Equation, both of them having fundamental solutions expressed through the M-Write function. The solutions demonstrate some basic issues of the suggested integral approach, among them: a) Choice of the profile, b) Integration problem emerging when the distribution (profile) is replaced by a prescribed one with unknown coefficients; c) Optimization of the profile in view to minimize the average error of approximations; d) Numerical results allowing comparisons to the known solutions expressed to the M-Write function and error estimations.Comment: 15 pages, 7 figures, 3 table

    The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package

    Get PDF
    The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project

    Street-level methane emissions of Bucharest, Romania and the dominance of urban wastewater

    Get PDF
    Atmospheric methane (CH4) continues to increase, but there are multiple anthropogenic source categories that can be targeted for cost-effective emissions reduction. Cities emit CH4 to the atmosphere from a mixture of anthropogenic CH4 sources, which include, but are not limited to, fugitive emissions from natural gas distribution systems, wastewater treatment facilities, waste-and rainwater networks, and landfills. Therefore, to target mitigation measures, it is important to locate and quantify local urban emissions to prioritize mitigation opportunities in large cities. Using mobile measurement techniques, we located street-level CH4 leak indications, measured flux rates, and determined potential source origins (using carbon and hydrogen stable isotopic composition along with ethane: CH4 ratios) of CH4 in Bucharest, Romania. We found 969 confirmed CH4 leak indication locations, where the maximum mole fraction elevation (above background) was 38.3 ppm (mean = 0.9 ppm ± 0.1 ppm s.e.; n = 2482). Individual leak indicator fluxes, derived using a previously established empirical relation, ranged up to around 15 metric tons CH4 yr-1 (mean = 0.8 metric tons yr-1 ± 0.05, s.e.; n = 969). The total estimated city emission rate is 1832 tons CH4 yr-1 (min = 1577 t yr-1 and max = 2113 t yr-1). More than half (58%–63%) of the CH4 elevations were attributed to biogenic wastewater, mostly from venting storm grates and manholes connecting to sewer pipelines. Hydrogen isotopic composition of CH4 and ethane:methane ratios were the most useful tracers of CH4 sources, due to similarities in carbon isotope ratios between wastewater gas and natural gas. The annual city-wide CH4 emission estimate of Bucharest exceeded emissions of Hamburg, Germany by 76% and Paris, France by 90%

    Beliefs and preferences regarding biological treatments for severe asthma

    Get PDF
    Background: Severe asthma is a serious condition with a significant burden on patients' morbidity, mortality, and quality of life. Some biological therapies targeting the IgE and interleukin-5 (IL5) mediated pathways are now available. Due to the lack of direct comparison studies, the choice of which medication to use varies. We aimed to explore the beliefs and practices in the use of biological therapies in severe asthma, hypothesizing that differences will occur depending on the prescribers’ specialty and experience. Methods: We conducted an online survey composed of 35 questions in English. The survey was circulated via the INterasma Scientific Network (INESNET) platform as well as through social media. Responses from allergists and pulmonologists, both those with experience of prescribing omalizumab with (OMA/IL5) and without (OMA) experience with anti-IL5 drugs, were compared. Results: Two hundred eighty-five (285) valid questionnaires from 37 countries were analyzed. Seventy-on percent (71%) of respondents prescribed biologics instead of oral glucocorticoids and believed that their side effects are inferior to those of Prednisone 5 mg daily. Agreement with ATS/ERS guidelines for identifying severe asthma patients was less than 50%. Specifically, significant differences were found comparing responses between allergists and pulmonologists (Chi-square test, p < 0.05) and between OMA/IL5 and OMA groups (p < 0.05). Conclusions: Uncertainties and inconsistencies regarding the use of biological medications have been shown. The accuracy of prescribers to correctly identify asthma severity, according to guidelines criteria, is quite poor. Although a substantial majority of prescribers believe that biological drugs are safer than low dose long-term treatment with oral steroids, and that they must be used instead of oral steroids, every effort should be made to further increase awareness. Efficacy as disease modifiers, biomarkers for selecting responsive patients, timing for outcomes evaluation, and checks need to be addressed by further research. Practices and beliefs regarding the use of asthma biologics differ between the prescriber's specialty and experience; however, the latter seems more significant in determining beliefs and behavior. Tailored educational measures are needed to ensure research results are better integrated in daily practice

    The Astropy Project: Building an inclusive, open-science project and status of the v2.0 core package

    Get PDF
    The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project
    • 

    corecore