2,699 research outputs found

    PGI5 THE COST-EFFECTIVENESS OF PEGINTERFERON ALFA-2B (I2KD) PLUS RIBAVIRIN VS. INTERFERON ALFA-2B PLUS RIBAVIRIN FOR CHRONIC HEPATITIS C (CHC) IN A DEVELOPING COUNTRY—BRAZIL

    Get PDF

    Gap junction reduction in cardiomyocytes following transforming growth factor- beta treatment and Trypanosoma cruzi infection

    Get PDF
    Gap junction connexin-43 (Cx43) molecules are responsible for electrical impulse conduction in the heart and are affected by transforming growth factor-beta (TGF-beta). This cytokine increases during Trypanosoma cruzi infection, modulating fibrosis and the parasite cell cycle. We studied Cx43 expression in cardiomyocytes exposed or not to TGF-beta T. cruzi, or SB-431542, an inhibitor of TGF-beta receptor type I (ALK-5). Cx43 expression was also examined in hearts with dilated cardiopathy from chronic Chagas disease patients, in which TGF-beta signalling had been shown previously to be highly activated. We demonstrated that TGF-beta treatment induced disorganised gap junctions in non-infected cardiomyocytes, leading to a punctate, diffuse and non-uniform Cx43 staining. A similar pattern was detected in T. cruzi-infected cardiomyocytes concomitant with high TGF-beta secretion. Both results were reversed if the cells were incubated with SB-431542. Similar tests were performed using human chronic chagasic patients and we confirmed a down-regulation of Cx43 expression, an altered distribution of plaques in the heart and a significant reduction in the number and length of Cx43 plaques, which correlated negatively with cardiomegaly. We conclude that elevated TGF-beta levels during T. cruzi infection promote heart fibrosis and disorganise gap junctions, possibly contributing to abnormal impulse conduction and arrhythmia that characterise severe cardiopathy in Chagas disease

    MECHANICAL CHARACTERISTICS OF ENDOCARP AND KERNEL OF CASHEW NUT 'CCP 76' PRIOR AND POST THERMAL TREATMENT

    Get PDF
    Viscoelastic characteristics of raw cashew nut shell hinder its decortication by compression. In order to facilitate the shell opening and to liberate the kernel, nuts were subjected to hydration and thermal treatment in cashew nut shell liquid (CSL) at 210 degrees C. With the objective of developing more appropriate shelling mechanisms the cashew nut 'CCP 76' was characterized by its main dimensions, mass and volume, as well as mechanical behavior of the endocarp and kernel, prior and after thermal treatments. The treatments consisted in submitting the nuts to several combinations of hydration and thermal treatment times. The response surface methodology was applied to identify the best treatment. Specially built devices were used for manual opening of the cashew nut, shear of the endocarp and penetration of the kernel. Changes were observed in the dimensions, length, width, and thickness as well as in mass and volume values prior and after treatments. Results of endocarp shear and kernel stiffness tests pointed out differences between raw and treated nuts. Changes in dimensions, mass, and volume pointed out to performing sizing after thermal treatments if dimensions are relevant in shelling. The response surface methodology indicated that the treatment comprising 79 h hydration and 165 s of residence in CSL at 210 degrees C was the closest to the optimum region.28356557

    Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease

    Get PDF
    Cardiac damage and dysfunction are prominent features in patients with chronic Chagas disease, which is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) and affects 10–12 million individuals in South and Central America. Our group previously reported that transforming growth factor beta (TGFß) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. In the present work, we evaluated the therapeutic action of an oral inhibitor of TGFß signaling (GW788388) administered during the acute phase of experimental Chagas disease. GW788388 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that GW788388 treatment was effective in protecting the cardiac conduction system, preserving gap junction plaque distribution and avoiding the development of cardiac fibrosis. Inhibition of TGFß signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic tool for acute and chronic Chagas disease that warrants further pre-clinical exploration. Administration of TGFß inhibitors during chronic infection in mouse models should be further evaluated, and future clinical trials should be envisaged

    Analytical methods applied to diverse types of Brazilian propolis

    Get PDF
    Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen) can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    A Phosphoproteomic Approach towards the Understanding of the Role of TGF-β in Trypanosoma cruzi Biology

    Get PDF
    Transforming growth factor beta (TGF-β) plays a pivotal role in Chagas disease, not only in the development of chagasic cardiomyopathy, but also in many stages of the T. cruzi life cycle and survival in the host cell environment. The intracellular signaling pathways utilized by T. cruzi to regulate these mechanisms remain unknown. To identify parasite proteins involved in the TGF-β response, we utilized a combined approach of two-dimensional gel electrophoresis (2DE) analysis and mass spectrometry (MS) protein identification. Signaling via TGF-β is dependent on events of phosphorylation, which is one of the most relevant and ubiquitous post-translational modifications for the regulation of gene expression, and especially in trypanosomatids, since they lack several transcriptional control mechanisms. Here we show a kinetic view of T. cruzi epimastigotes (Y strain) incubated with TGF-β for 1, 5, 30 and 60 minutes, which promoted a remodeling of the parasite phosphorylation network and protein expression pattern. The altered molecules are involved in a variety of cellular processes, such as proteolysis, metabolism, heat shock response, cytoskeleton arrangement, oxidative stress regulation, translation and signal transduction. A total of 75 protein spots were up- or down-regulated more than twofold after TGF-β treatment, and from these, 42 were identified by mass spectrometry, including cruzipain–the major T. cruzi papain-like cysteine proteinase that plays an important role in invasion and participates in the escape mechanisms used by the parasite to evade the host immune system. In our study, we observed that TGF-β addition favored epimastigote proliferation, corroborating 2DE data in which proteins previously described to be involved in this process were positively stimulated by TGF-β
    corecore