415 research outputs found

    COVID-19 Mortality and Case-Fatality Rates in Sergipe State, Northeast Brazil, From April to June 2020

    Get PDF
    Information on how coronavirus disease 2019 (COVID-19) mortality is related to population characteristics in low- and middle-income countries is still limited. We described the deaths from COVID-19 in Sergipe state, Northeast Brazil, from April 2 to June 27, 2020. For this purpose, we conducted a study composed of (i) a case series study of all deaths due to COVID-19 and (ii) a population-based study to verify the behavior of the mortality and case-fatality rates (CFR) related to COVID-19. Data from 605 deaths due to COVID-19 were used to describe the characteristics of individuals with the disease, as well as the differences in gender, age, and comorbidities. Additionally, population data were extracted to estimate the mortality and CFR by population stratum. We also performed an adjusted CFR analysis including a time lag of 14 days between the onset of symptoms and reporting deaths. Of the 605 patients included in this study, 321 (53.1%) were males and the median age was 67.0 years. Most patients (n = 447, 73.9%) who died from COVID-19 had at least one pre-existing clinical condition. The mortality rate was 29.3 deaths per 100,000 inhabitants and the crude CRF was 2.6% (95% CI 2.4–2.8). CFR was higher in males (3.1%, 95% CI 2.8–3.4; p < 0.001) and people aged =60 years (14.2%, 95% CI 13.0–15.6; p = 0.042). About 25% of patients died during the first 24-h post-hospital admission. The adjusted CFR for a 14-day time lag was ~2-fold higher than the crude CFR over the study period.We dedicated this article to all health professionals who are facing COVID-19. This study was part of the EpiSERGIPE project. NM thanks the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/280 76/2017)

    Theory to Practice: Performance Preparation Models in Contemporary High-Level Sport Guided by an Ecological Dynamics Framework

    Get PDF
    Abstract: A fundamental challenge for practitioners in high-level sporting environments concerns how to support athletes in adapting behaviours to solve emergent problems during competitive performance. Guided by an ecological dynamics framework, the design and integration of competitive performance preparation models that place athlete-environment interactions at the heart of the learning process may address this challenge. This ecological conceptualisation of performance preparation signifies a shift in a coach’s role; evolving from a consistent solution provider to a learning environment designer who fosters local athlete-environment interactions. However, despite the past decades of research within the ecological dynamics framework developing an evidence-based, theoretical conceptualisation of skill acquisition, expertise and talent development, an ongoing challenge resides within its practical integration into sporting environments. This article provides two case examples in which high-level sports organisations have utilised an ecological dynamics framework for performance preparation in Australian football and Association Football. A unique perspective is offered on experiences of professional sport organisations attempting to challenge traditional ideologies for athlete performance preparation by progressing the theoretical application of ecological dynamics. These case examples intend to promote the sharing of methodological ideas to improve athlete development, affording opportunities for practitioners and applied scientists to accept, reject or adapt the approaches presented here to suit their specific ecosystems

    Equilibrium of Global Amphibian Species Distributions with Climate

    Get PDF
    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions

    Characterization and Evaluation of Layered Bi2WO6 Nanosheets as a New Antibacterial Agent

    Get PDF
    Background: Pathogenic microorganisms are causing increasing cases of mortality and morbidity, along with alarming rates of ineffectiveness as a result of acquired antimicrobial resistance. Bi2WO6 showed good potential to be used as an antibacterial substance when exposed to visible light. This study demonstrates for the first time the dimension-dependent antibacterial activity of layered Bi2WO6 nanosheets. Materials and methods: The synthesized layered Bi2WO6 nanosheets were prepared by the hydrothermal method and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman and Fourier transform infrared spectroscopy (FTIR). Antibacterial and antibiotic-modulation activities were performed in triplicate by the microdilution method associated with visible light irradiation (LEDs). Results: Bi2WO6 nanosheets were effective against all types of bacteria tested, with MIC values of 256 µg/mL against Escherichia coli standard and resistant strains, and 256 µg/mL and 32 µg/mL against Staphylococcus aureus standard and resistant strains, respectively. Two-dimensional (2D) Bi2WO6 nanosheets showed antibacterial efficiency against both strains studied without the presence of light. Conclusions: Layered Bi2WO6 nanosheets revealed dimension-dependent antibacterial activity of the Bi2WO6 system.The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico— CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico—FUNCAP (Proc. BP4-00172-00232.01.00/20 and Proc. PR2-0101-00006.01.00/15) for the financial support. The authors would also like to thank the educational institutions UFCA, URCA, and UNILEÃO for their support during the experiments

    Low-background gamma spectroscopy at the Boulby Underground Laboratory

    Get PDF
    The Boulby Underground Germanium Suite (BUGS) comprises three low-background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of detector to facilitate a high-sensitivity, high-throughput radio-assay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210 Pb and 234 Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6mBqkg −1 for 234 Th and 6.6mBqkg −1 for 210 Pb both of which have uncovered some significant equilibrium breaks in the 238 U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9mBqkg −1 for 226 Ra, 1.1mBqkg −1 for 228 Ra, 0.3mBqkg −1 for 224 Ra, and 8.6mBqkg −1 for 40 K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils

    Fluctuation Conductivity of Polycrystalline Y

    Get PDF
    We studied the effect of superconducting fluctuations on the electrical conductivity of granular samples of Y 1−x Pr x Ba 2 Cu 3 O 7−δ superconductors, with x =0.01, 0.03, 0.05, 0.07 and 0.10. Samples were prepared by the standard solid-state reaction technique, with two different types of calcination process, in air at 900˚C ( x ≤ 0.07 ) and in vacuum at 850˚C ( 0.05 ≤ x ≤ 0.10 ). For the samples prepared in air, our results revealed a splitting of the bulk transition, denoted by T C1 and T C2 , besides the coherence transition. It was observed fluctuation regimes above the highest transition ( T C1 ) and the lowest transition ( T C2 ). For the samples calcinated in vacuum and high concentrations of Pr, changes were observed in the critical region with chemical substitution of the Pr ion for the Y ion. In the regime of approach to the zero resistance state it was observed an occurrence of a coherence transition for all concentrations of praseodymium

    From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles

    Get PDF
    BACKGROUND: Aim of the study was to identify the conditions under which spatial-environmental models can be used for the improved understanding of species distributions, under the explicit criterion of model predictive performance. I constructed distribution models for 17 amphibian and 21 reptile species in Portugal from atlas data and 13 selected ecological variables with stepwise logistic regression and a geographic information system. Models constructed for Portugal were extrapolated over Spain and tested against range maps and atlas data. RESULTS: Descriptive model precision ranged from 'fair' to 'very good' for 12 species showing a range border inside Portugal ('edge species', kappa (k) 0.35–0.89, average 0.57) and was at best 'moderate' for 26 species with a countrywide Portuguese distribution ('non-edge species', k = 0.03–0.54, average 0.29). The accuracy of the prediction for Spain was significantly related to the precision of the descriptive model for the group of edge species and not for the countrywide species. In the latter group data were consistently better captured with the single variable search-effort than by the panel of environmental data. CONCLUSION: Atlas data in presence-absence format are often inadequate to model the distribution of species if the considered area does not include part of the range border. Conversely, distribution models for edge-species, especially those displaying high precision, may help in the correct identification of parameters underlying the species range and assist with the informed choice of conservation measures
    corecore