273 research outputs found

    Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom

    Get PDF
    The occurrence of antibiotics in surface waters has been reported worldwide with concentrations ranging from ng L−1 to low µg L−1 levels. During environmental risk assessments, effects of antibiotics on algal species are assessed using standard test protocols (e.g., the OECD 201 guideline), where the cell number endpoint is used as a surrogate for growth. However, the use of photosynthetic related endpoints, such as oxygen evolution rate, and the assessment of effects on algal pigments could help to inform our understanding of the impacts of antibiotics on algal species. This study explored the effects of three major usage antibiotics (tylosin, lincomycin, and trimethoprim) on the growth and physiology of two chlorophytes (Desmodesmus subspicatus and Pseudokirchneriella subcapitata), a cyanobacteria (Anabaena flos-aquae), and a diatom (Navicula pelliculosa) using a battery of parameters, including cell density, oxygen evolution rate, total chlorophyll content, carotenoids, and the irradiance–photosynthesis relationship. The results indicated that photosynthesis of chlorophytes was a more sensitive endpoint than growth (i.e., EC50 derived based on the effects of tylosin on the growth of D. subspicatus was 38.27 µmol L−1 compared with an EC50 of 17.6 µmol L−1 based on photosynthetic rate), but the situation was reversed when testing cyanobacteria and the diatom (i.e., EC50 derived based on the effects of tylosin on the growth of A. flos-aquae was 0.06 µmol L−1; EC50 0.33 µmol L−1 based on photosynthetic rate). The pigment contents of algal cells were affected by the three antibiotics for D. subspicatus. However, in some cases, pigment content was stimulated for P. subcapitata, N. pelliculosa, and A. flos-aquae. The light utilization efficiency of chlorophytes and diatom was decreased markedly in the presence of antibiotics. The results demonstrated that the integration of these additional endpoints into existing standardised protocols could provide useful insights into the impacts of antibiotics on algal species

    Suppression of Chlorella vulgaris Growth by Cadmium, Lead, and Copper Stress and Its Restoration by Endogenous Brassinolide

    Get PDF
    Brassinosteroids play a significant role in the amelioration of various abiotic and biotic stresses. In order to elaborate their roles in plants subjected to heavy metals stress, Chlorella vulgaris cultures treated with 10−8 M brassinolide (BL) were exposed to 10−6–10−4 M heavy metals (cadmium, lead and copper) application. Under heavy metals stress, the growth and chemical composition (chlorophyll, monosaccharides, and protein content) have been decreased during the first 48 h of cultivation. The inhibitory effect of heavy metals on C. vulgaris cultures was arranged in the following order: copper > lead > cadmium. C. vulgaris cultures treated with BL in the absence or presence of heavy metals showed no differences in the endogenous level of BL. On the other hand, treatment with heavy metals results in BL level very similar to that of control cell cultures. These results suggest that the activation of brassinosteroids biosynthesis, via an increase of endogenous BL, is not essential for the growth and development of C. vulgaris cells in response to heavy metals stress. Simultaneously, BL enhanced the content of indole-3-acetic acid, zeatin, and abscisic acid in cultures treated with heavy metals. Levels per cell of chlorophylls, protein, and monosaccharides are all increased by BL treatment when compared to nontreated control cells. Application of BL to C. vulgaris cultures reduced the accumulation of heavy metals stress on growth, prevented chlorophyll, monosaccharides, and protein loss, and increased phytochelatins content. The arrested growth of C. vulgaris cells treated with heavy metals was restored by the coapplication of BL. It suggested that BL overcame the inhibitory effect of heavy metals. From these results, it can be concluded that BL plays the positive role in the alleviation of heavy metals stress

    Colour assessment outcomes – a new approach to grading the severity of color vision loss

    Get PDF
    INTRODUCTION: Recent studies have shown that a significant percentage of subjects with anomalous, congenital trichromacy can perform the suprathreshold, colour-related tasks encountered in many occupations with the same accuracy as normal trichromats. In the absence of detailed, occupation-specific studies, an alternative approach is to make use of new findings and the statistical outcomes of past practices that have been considered safe to produce graded, justifiable categories of colour vision that can be enforced. METHODS: We analyzed traditional color assessment outcomes and measured severity of colour vision loss using the CAD test in 1363 subjects (336 normals, 705 deutan, 319 protan and 3 tritan). The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. RESULTS: The correlation between the number of Ishihara (IH) test plates subjects fail and the severity of RG colour vision loss was very poor. The 38 plates IH test has high sensitivity when no errors are allowed (i.e., only 0.71% deutans and 0.63% protans pass). Protocols based on zero errors are uncommon since 18.15% of normal trichromats fail. The most common protocols employ either the 24 or the 14 plates editions with two or less errors. These protocols pass almost all normal trichromats, but the deutans and some protans that also pass (when two or less errors are allowed) can be severely deficient. This is simply because the most challenging plates have not been included in the 24 and 14 plates editions. As a result, normals no longer fail, but the deutans and protans that pass have more severe loss of colour vision since they fail less challenging plates. The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. DISCUSSION: Historical evidence and new findings that relate severity of loss to the effective use of colour signals in a number of tasks provide the basis for a new colour grading system based on six categories. A single colour assessment test is needed to establish the applicant’s Colour Vision category which can range from ‘supernormal’ (CV0), for the most stringent, colour-demanding tasks, to ‘severe colour deficiency’, when red / green colour vision is either absent or extremely weak (CV5)

    Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    Get PDF
    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently
    corecore