65 research outputs found

    Bi-directional cell-pericellular matrix interactions direct stem cell fate

    Get PDF
    Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells’ 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells’ reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC’s interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate

    The freshwater Sponge Ephydatia Fluviatilis harbours diverse pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity

    Get PDF
    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT-funded project [PTDC/BIA-MIC/3865/2012]; Federation of European Microbiological Societies (FEMS)info:eu-repo/semantics/publishedVersio

    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

    Get PDF
    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant number DEB-1442113). Received by AR. U.S. National Library of Medicine training grant (grant number 2T15LM007450). Received by ALL. Conselho Nacional de Desenvolvimento Cientı´fico e 573 Tecnológico. Northern Portugal Regional Operational Programme (grant number NORTE-01- 0145-FEDER-000013). Received by FR. Fundação de Amparo à Pesquisa do 572 Estado de São Paulo. Received by GHG. National Institutes of Health (grant number R01 AI065728-01). Received by NPK. National Science Foundation (grant number IOS-1401682). Received by JHW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    New approach to waste-heat energy harvesting: pyroelectric energy conversion

    Get PDF
    Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed
    corecore