30 research outputs found
The Distances of the Magellanic Clouds
The present status of our knowledge of the distances to the Magellanic Clouds
is evaluated from a post-Hipparcos perspective. After a brief summary of the
effects of structure, reddening, age and metallicity, the primary distance
indicators for the Large Magellanic Cloud are reviewed: The SN 1987A ring,
Cepheids, RR Lyraes, Mira variables, and Eclipsing Binaries. Distances derived
via these methods are weighted and combined to produce final "best" estimates
for the Magellanic Clouds distance moduli.Comment: Invited review article to appear in ``Post Hipparcos Cosmic
Candles'', F. Caputo & A. Heck (Eds.), Kluwer Academic Publ., Dordrecht, in
pres
Nonthermal Emission from Star-Forming Galaxies
The detections of high-energy gamma-ray emission from the nearby starburst
galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of
star-driven nonthermal processes and phenomena in non-AGN star-forming
galaxies. We review basic aspects of the related processes and their modeling
in starburst galaxies. Since these processes involve both energetic electrons
and protons accelerated by SN shocks, their respective radiative yields can be
used to explore the SN-particle-radiation connection. Specifically, the
relation between SN activity, energetic particles, and their radiative yields,
is assessed through respective measures of the particle energy density in
several star-forming galaxies. The deduced energy densities range from O(0.1)
eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high
star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space
Science Proceeding
The contribution of microlensing surveys to the distance scale
In the early nineties several teams started large scale systematic surveys of
the Magellanic Clouds and the Galactic Bulge to search for microlensing
effects. As a by product, these groups have created enormous time-series
databases of photometric measurements of stars with a temporal sampling
duration and accuracy which are unprecedented. They provide the opportunity to
test the accuracy of primary distance indicators, such as Cepheids, RRLyrae
stars, the detached eclipsing binaries, or the luminosity of the red clump. We
will review the contribution of the microlensing surveys to the understanding
of the physics of the primary distance indicators, recent differential studies
and direct distance determinations to the Magellanic Clouds and the Galactic
Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages; uses Kluwer's crckapb.sty LaTeX style file, enclose
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Planetary nebulae: abundances and abundance gradients
In this work, a review is given of some recent results and problems involved in the determination of chemical abundances of galactic planetary nebulae, particularly regarding disk and bulge objects
Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone
Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15:0 and C17:1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus
Recommended from our members
CALIFA, the Calar Alto Legacy Integral Field Area survey IV. Third public data release
This paper describes the Third Public Data Release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the Second Public Data Release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5m telescope at the Calar Alto Observatory. Three different spectral setups are available: i) a low-resolution V500 setup covering the wavelength range 3745–7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, ii) a medium-resolution V1200 setup covering the wavelength range 3650–4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and iii) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ∼1.5 million independent spectra. It is available at http://califa.caha.es/DR3.CALIFA is the first legacy survey being performed at Calar Alto. The CALIFA collaboration would like to thank the IAA-CSIC and MPIAMPG as major partners of the observatory, and CAHA itself, for the unique access to telescope time and support in manpower and infrastructures. The CALIFA collaboration thanks also the CAHA staff for the dedication to this project. We thank the anonymous referee for his/her help in improving this article. SFS thanks the director of CEFCA, M. Moles, for his sincere support to this project. SFS thanks the CONACYT-125180 and DGAPA-IA100815 projects for providing him support in this study. RGB, RGD, and EP are supported by grants AYA2014-57490-P and JA-FQM-2828. SZ is supported by the EU Marie Curie Integration Grant “SteMaGE” Nr. PCIG12-GA-2012-326466 (Call Identifier: FP7-PEOPLE-2012 CIG). J. F-B. from grant AYA2013-48226-C3-1-P from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement number 289313 B.G-L- acknowledges financial support by the Spanish MINECO under grants AYA2013- 41656-P and AYA2015-68217-P Support for L.G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, MAS. L.G. also acknowledges support by CONICYT through FONDECYT grant 3140566. and AYA2013-42227-P from the Spanish Ministerio de Ciencia e Innovación and TIC 114 and PO08-TIC-3531 from Junta de Andalucía. AG acknowledges support from the FP7/2007-2013 under grant agreement n. 267251 (AstroFIt). RAM was funded by the Spanish programme of International Campus of Excellence Moncloa (CEI). JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). IM and AdO acknowledge the support by the projects AYA2010-15196 from the Spanish Ministerio de Ciencia e Innovación and TIC 114 and PO08-TIC-3531 from Junta de Andalucía. AMI acknowledges support from Agence Nationale de la Recherche through the STILISM project (ANR-12-BS05-0016-02). MM acknowledges financial support from AYA2010-21887-C04-02 from the Ministerio de Economía y Competitividad. PSB acknowledges support from the Ramón y Cajal program, grant ATA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO). CJW acknowledges support through the Marie Curie Career Integration Grant 303912. VW acknowledges support from the European Research Council Starting Grant (SEDMorph P.I. V. Wild) and European Career Re-integration Grant (Phiz-Ev P.I. V. Wild). YA acknowledges financial support from the Ramón y Cajal programme (RyC-2011-09461) and project AYA2013-47742-C4-3-P, both managed by the Ministerio de Economía y Competitividad, as well as the ‘Study of Emission-Line Galaxies with Integral-Field Spectroscopy’ (SELGIFS) programme, funded by the EU (FP7-PEOPLE-2013- IRSES-612701) within the Marie-Sklodowska-Curie Actions scheme. ROM acknowledges support from CAPES (Brazil) through a PDJ fellowship from project 88881.030413/2013-01, program CSF-PVE.This is the author accepted manuscript. The final version is available from EDP Sciences via http://dx.doi.org/10.1051/0004-6361/20162866