132 research outputs found

    Yoga-Based Cardiac Rehabilitation After Acute Myocardial Infarction: A Randomized Trial

    Get PDF
    Background: Given the shortage of cardiac rehabilitation (CR) programs in India and poor uptake worldwide, there is an urgent need to find alternative models of CR that are inexpensive and may offer choice to subgroups with poor uptake (e.g., women and elderly). Objectives: This study sought to evaluate the effects of yoga-based CR (Yoga-CaRe) on major cardiovascular events and self-rated health in a multicenter randomized controlled trial. Methods: The trial was conducted in 24 medical centers across India. This study recruited 3,959 patients with acute myocardial infarction with a median and minimum follow-up of 22 and 6 months. Patients were individually randomized to receive either a Yoga-CaRe program (n = 1,970) or enhanced standard care involving educational advice (n = 1,989). The co-primary outcomes were: 1) first occurrence of major adverse cardiovascular events (MACE) (composite of all-cause mortality, myocardial infarction, stroke, or emergency cardiovascular hospitalization); and 2) self-rated health on the European Quality of Life–5 Dimensions–5 Level visual analogue scale at 12 weeks. Results: MACE occurred in 131 (6.7%) patients in the Yoga-CaRe group and 146 (7.4%) patients in the enhanced standard care group (hazard ratio with Yoga-CaRe: 0.90; 95% confidence interval [CI]: 0.71 to 1.15; p = 0.41). Self-rated health was 77 in Yoga-CaRe and 75.7 in the enhanced standard care group (baseline-adjusted mean difference in favor of Yoga-CaRe: 1.5; 95% CI: 0.5 to 2.5; p = 0.002). The Yoga-CaRe group had greater return to pre-infarct activities, but there was no difference in tobacco cessation or medication adherence between the treatment groups (secondary outcomes). Conclusions: Yoga-CaRe improved self-rated health and return to pre-infarct activities after acute myocardial infarction, but the trial lacked statistical power to show a difference in MACE. Yoga-CaRe may be an option when conventional CR is unavailable or unacceptable to individuals. (A study on effectiveness of YOGA based cardiac rehabilitation programme in India and United Kingdom; CTRI/2012/02/002408)

    A review of data needed to parameterize a dynamic model of measles in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic models of infection transmission can project future disease burden within a population. Few dynamic measles models have been developed for low-income countries, where measles disease burden is highest. Our objective was to review the literature on measles epidemiology in low-income countries, with a particular focus on data that are needed to parameterize dynamic models.</p> <p>Methods</p> <p>We included age-stratified case reporting and seroprevalence studies with fair to good sample sizes for mostly urban African and Indian populations. We emphasized studies conducted before widespread immunization. We summarized age-stratified attack rates and seroprevalence profiles across these populations. Using the study data, we fitted a "representative" seroprevalence profile for African and Indian settings. We also used a catalytic model to estimate the age-dependent force of infection for individual African and Indian studies where seroprevalence was surveyed. We used these data to quantify the effects of population density on the basic reproductive number <it>R</it><sub>0</sub>.</p> <p>Results</p> <p>The peak attack rate usually occurred at age 1 year in Africa, and 1 to 2 years in India, which is earlier than in developed countries before mass vaccination. Approximately 60% of children were seropositive for measles antibody by age 2 in Africa and India, according to the representative seroprevalence profiles. A statistically significant decline in the force of infection with age was found in 4 of 6 Indian seroprevalence studies, but not in 2 African studies. This implies that the classic threshold result describing the critical proportion immune (<it>p</it><sub>c</sub>) required to eradicate an infectious disease, <it>p</it><sub>c </sub>= 1-1/<it>R</it><sub>0</sub>, may overestimate the required proportion immune to eradicate measles in some developing country populations. A possible, though not statistically significant, positive relation between population density and <it>R</it><sub>0 </sub>for various Indian and African populations was also found. These populations also showed a similar pattern of waning of maternal antibodies. Attack rates in rural Indian populations show little dependence on vaccine coverage or population density compared to urban Indian populations. Estimated <it>R</it><sub>0 </sub>values varied widely across populations which has further implications for measles elimination.</p> <p>Conclusions</p> <p>It is possible to develop a broadly informative dynamic model of measles transmission in low-income country settings based on existing literature, though it may be difficult to develop a model that is closely tailored to any given country. Greater efforts to collect data specific to low-income countries would aid in control efforts by allowing highly population-specific models to be developed.</p

    Pediatr Nephrol

    Get PDF
    BACKGROUND: Current guidelines advocate use of arteriovenous fistula (AVF) over central venous catheter (CVC) for children starting hemodialysis (HD). European data on current practice, determinants of access choice and switches, patient survival, and access to transplantation are limited. METHODS: We included incident patients from 18 European countries who started HD from 2000 to 2013 for whom vascular access type was reported to the ESPN/ERA-EDTA Registry. Data were evaluated using descriptive statistics, logistic and Cox regression models, and cumulative incidence competing risk analysis. RESULTS: Three hundred ninety-three (55.1%) of 713 children started HD with a CVC and were more often females, younger, had more often an unknown diagnosis, glomerulonephritis, or vasculitis, and lower hemoglobin and height-SDS at HD initiation. AVF patients were 91% less likely to switch to a second access, and two-year patient survival was 99.6% (CVC, 97.2%). Children who started with an AVF were less likely to receive a living donor transplant (adjusted HR, 0.30; 95% CI, 0.16-0.54) and more likely to receive a deceased donor transplant (adjusted HR, 1.50; 95% CI, 1.17-1.93), even after excluding patients who died or were transplanted in the first 6 months. CONCLUSIONS: CVC remains the most frequent type of vascular access in European children commencing HD. Our results suggest that the choice for CVC is influenced by the time of referral, rapid onset of end-stage renal disease, young age, and an expected short time to transplantation. The role of vascular access type on the pattern between living and deceased donation in subsequent transplantation requires further study

    Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study

    Get PDF
    Background: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. Interpretation: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. Funding: UK National Institute for Health Research and UK Medical Research Council

    Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK

    Get PDF
    Background: Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. Methods: We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. Findings: 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05–1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08–1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60–0·72] for those without asthma and 0·74 [0·62–0·87] for those with asthma; p<0·0001 for both). In patients aged 16–49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73–1·86] for those on no asthma therapy, 0·99 [0·61–1·58] for those on SABAs only, 0·94 [0·62–1·43] for those on inhaled corticosteroids only, 1·02 [0·67–1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25–3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12–1·22] for those not on inhaled corticosteroids, and 1·10 [1·04–1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04–1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80−0·92]). Interpretation: Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease. Funding: National Institute for Health Research, Medical Research Council, NIHR Health Protection Research Units in Emerging and Zoonotic Infections at the University of Liverpool and in Respiratory Infections at Imperial College London in partnership with Public Health England

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore