1,204 research outputs found

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding

    Get PDF
    For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 105 – 108 cells/cm3, and total volumes between 1×10−7 and 8×10−4 cm3. By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (108 – 109 cells/cm3). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering

    Personality Traits and Behavioral Syndromes in Differently Urbanized Populations of House Sparrows (Passer domesticus)

    Get PDF
    Urbanization creates novel environments for wild animals where selection pressures may differ drastically from those in natural habitats. Adaptation to urban life involves changes in various traits, including behavior. Behavioral traits often vary consistently among individuals, and these so-called personality traits can be correlated with each other, forming behavioral syndromes. Despite their adaptive significance and potential to act as constraints, little is known about the role of animal personality and behavioral syndromes in animals' adaptation to urban habitats. In this study we tested whether differently urbanized habitats select for different personalities and behavioral syndromes by altering the population mean, inter-individual variability, and correlations of personality traits. We captured house sparrows (Passer domesticus) from four different populations along the gradient of urbanization and assessed their behavior in standardized test situations. We found individual consistency in neophobia, risk taking, and activity, constituting three personality axes. On the one hand, urbanization did not consistently affect the mean and variance of these traits, although there were significant differences between some of the populations in food neophobia and risk taking (both in means and variances). On the other hand, both urban and rural birds exhibited a behavioral syndrome including object neophobia, risk taking and activity, whereas food neophobia was part of the syndrome only in rural birds. These results indicate that there are population differences in certain aspects of personality in house sparrows, some of which may be related to habitat urbanization. Our findings suggest that urbanization and/or other population-level habitat differences may not only influence the expression of personality traits but also alter their inter-individual variability and the relationships among them, changing the structure of behavioral syndromes

    Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations

    Get PDF
    The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26±32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product

    The association between socioeconomic status and traditional chinese medicine use among children in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese medicine (TCM) utilization is common in Asian countries. Limited studies are available on the socioeconomic status (SES) associated with TCM use among the pediatric population. We report on the association between SES and TCM use among children and adolescents in Taiwan.</p> <p>Methods</p> <p>A National Health Interview Survey was conducted in Taiwan in 2001 that included 5,971 children and adolescents. We assessed the children's SES using the head of household's education, occupation and income. This information was used to calculate pediatric SES scores, which in turn were divided into quartiles. Children and adolescents who visited TCM in the past month were defined as TCM users.</p> <p>Results</p> <p>Compared to children in the second SES quartile, children in the fourth SES quartile had a higher average number of TCM visits (0.12 vs. 0.06 visits, p = 0.027) and higher TCM use prevalence (5.0% vs. 3.6%, p = 0.024) within the past month. The adjusted odds ratio (OR) for TCM use was higher for children in the fourth SES quartile than for those in the first SES quartile (OR 1.49; 95% confidence interval [CI] 1.02-2.17). The corresponding OR was 2.17 for girls (95% CI 1.24-3.78). The highest-SES girls (aged 10-18 years) were most likely to visit TCM practices (OR 2.47; 95% CI 1.25-4.90).</p> <p>Conclusions</p> <p>Children and adolescents with high SES were more likely to use TCM and especially girls aged 10-18 years. Our findings point to the high use of complementary and alternative medicine among children and adolescents.</p

    Classification of Foetal Distress and Hypoxia Using Machine Learning Approaches

    Get PDF
    © 2018, Springer International Publishing AG, part of Springer Nature. Foetal distress and hypoxia (oxygen deprivation) is considered as a serious condition and one of the main factors for caesarean section in the obstetrics and Gynecology department. It is the third most common cause of death in new-born babies. Many foetuses that experienced some sort of hypoxic effects can develop series risks including damage to the cells of the central nervous system that may lead to life-long disability (cerebral palsy) or even death. Continuous labour monitoring is essential to observe the foetal well being. Foetal surveillance by monitoring the foetal heart rate with a cardiotocography is widely used. Despite the indication of normal results, these results are not reassuring, and a small proportion of these foetuses are actually hypoxic. In this paper, machine-learning algorithms are utilized to classify foetuses which are experiencing oxygen deprivation using PH value (a measure of hydrogen ion concentration of blood used to specify the acidity or alkalinity) and Base Deficit of extra cellular fluid level (a measure of the total concentration of blood buffer base that indicates the metabolic acidosis or compensated respiratory alkalosis) as indicators of respiratory and metabolic acidosis, respectively, using open source partum clinical data obtained from Physionet. Six well know machine learning classifier models are utilised in our experiments for the evaluation; each model was presented with a set of selected features derived from the clinical data. Classifier’s evaluation is performed using the receiver operating characteristic curve analysis, area under the curve plots, as well as the confusion matrix. Our simulation results indicate that machine-learning algorithms provide viable methods that could delivery improvements over conventional analysis

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
    corecore