40 research outputs found
The phases of deuterium at extreme densities
We consider deuterium compressed to higher than atomic, but lower than
nuclear densities. At such densities deuterium is a superconducting quantum
liquid. Generically, two superconducting phases compete, a "ferromagnetic" and
a "nematic" one. We provide a power counting argument suggesting that the
dominant interactions in the deuteron liquid are perturbative (but screened)
Coulomb interactions. At very high densities the ground state is determined by
very small nuclear interaction effects that probably favor the ferromagnetic
phase. At lower densities the symmetry of the theory is effectively enhanced to
SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor
nematic. Our results can serve as a starting point for investigations of the
phase dynamics of deuteron liquids, as well as exploration of the stability and
dynamics of the rich variety of topological objects that may occur in phases of
the deuteron quantum liquid, which range from Alice strings to spin skyrmions
to Z_2 vortices.Comment: 9 pages, 6 figures; v2: fixed typo
Cell motility: the integrating role of the plasma membrane
The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process
Modern tests of Lorentz invariance
Motivated by ideas about quantum gravity, a tremendous amount of effort over
the past decade has gone into testing Lorentz invariance in various regimes.
This review summarizes both the theoretical frameworks for tests of Lorentz
invariance and experimental advances that have made new high precision tests
possible. The current constraints on Lorentz violating effects from both
terrestrial experiments and astrophysical observations are presented.Comment: Modified and expanded discussions of various points. Numerous
references added. Version matches that accepted by Living Reviews in
Relativit
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
The little skyrmion: new dark matter for little Higgs models
We study skyrmions in the littlest Higgs model and discuss their possible role as dark matter candidates. Stable massive skyrmions can exist in the littlest Higgs model also in absence of an exact parity symmetry, since they carry a conserved topological charge due to the non-trivial third homotopy group of the SU(5)/SO(5) coset. We find a spherically symmetric skyrmion solution in this coset. The effects of gauge fields on the skyrmion solutions are analyzed and found to lead to an upper bound on the skyrmion mass. The relic abundance is in agreement with the observed dark matter density for reasonable parameter choices
The Z c ( 3900 ) peak does not come from the “triangle singularity”
Abstract We compare contributions from the triangle diagram and the DD¯∗ bubble chain with the processes of e+e-→J/ψπ+π- and e+e-→(DD¯∗)∓π± . By fitting the J/ψπ maximum spectrum and the DD¯∗ spectrum, we find that the triangle diagram cannot explain the new experimental results from BESIII Collaboration at center of mass at 4.23 and 4.26 GeV, simultaneously. On the contrary, the molecular assignment of Zc(3900) gives a much better description
Effect of bending rigidity in a dynamic model of a polyurethane prosthetic mitral valve
We investigate the behaviour of a dynamic fluid–structure interaction model of a chorded polyurethane mitral valve prosthesis, focusing on the effects on valve dynamics of including descriptions of the bending stiffnesses of the valve leaflets and artificial chordae tendineae. Each of the chordae is attached at one end to the valve annulus and at the other to one of two chordal attachment points. These attachment points correspond to the positions where the chords of the real prosthesis would attach to the left-ventricular wall, although in the present study, these attachment points are kept fixed in space to facilitate comparison between our simulations and earlier results obtained from an experimental test rig. In our simulations, a time-dependent pressure difference derived from experimental measurements drives flow through the model valve during diastole and provides a realistic pressure load during systole. In previous modelling studies of this valve prosthesis, the valve presents an unrealistically large orifice at beginning of diastole and does not close completely at the end of diastole. We show that including a description of the chordal bending stiffness enables the model valve to close properly at the end of the diastolic phase of the cardiac cycle. Valve over-opening is eliminated only by incorporating a description of the bending stiffnesses of the valve leaflets into the model. Thus, bending stiffness plays a significant role in the dynamic behaviour of the polyurethane mitral valve prosthesis