132 research outputs found

    Haemodynamic consequences of targeted single- and dual-site right ventricular pacing in adults with congenital heart disease undergoing surgical pulmonary valve replacement

    Get PDF
    Aims The purpose of this study was to create an epicardial electroanatomic map of the right ventricle (RV) and then apply post-operative-targeted single- and dual-site RV temporary pacing with measurement of haemodynamic parameters. Cardiac resynchronization therapy is an established treatment for symptomatic left ventricular (LV) dysfunction. In congenital heart disease, RV dysfunction is a common cause of morbidity—little is known regarding the potential benefits of CRT in this setting. Methods and results Sixteen adults (age = 32 ± 8 years; 6 M, 10 F) with right bundle branch block (RBBB) and repaired tetralogy of Fallot (n = 8) or corrected congenital pulmonary stenosis (n = 8) undergoing surgical pulmonary valve replacement (PVR) for pulmonary regurgitation underwent epicardial RV mapping and haemodynamic assessment of random pacing configurations including the site of latest RV activation. The pre-operative pulmonary regurgitant fraction was 49 ± 10%; mean LV end-diastolic volume (EDV) 85 ± 19 mL/min/m2 and RVEDV 183 ± 89 mL/min/m2 on cardiac magnetic resonance imaging. The mean pre-operative QRS duration is 136 ± 26 ms. The commonest site of latest activation was the RV free wall and DDD pacing here alone or combined with RV apical pacing resulted in significant increases in cardiac output (CO) vs. AAI pacing (P < 0.01 all measures). DDDRV alternative site pacing significantly improved CO by 16% vs. AAI (P = 0.018), and 8.5% vs. DDDRV apical pacing (P = 0.02). Conclusion Single-site RV pacing targeted to the region of latest activation in patients with RBBB undergoing PVR induces acute improvements in haemodynamics and supports the concept of ‘RV CRT’. Targeted pacing in such patients has therapeutic potential both post-operatively and in the long term

    Guselkumab demonstrated an independent treatment effect in reducing fatigue after adjustment for clinical response—results from two phase 3 clinical trials of 1120 patients with active psoriatic arthritis

    Get PDF
    Background The interleukin-23p19-subunit inhibitor guselkumab effectively treats signs and symptoms of psoriatic arthritis (PsA). We evaluated the effect of guselkumab on fatigue. Methods Across two phase 3 trials of guselkumab (DISCOVER-1, DISCOVER-2), patients with active PsA despite standard therapy were randomized to subcutaneous injections of guselkumab 100 mg every 4 weeks (Q4W, N = 373); guselkumab 100 mg at week 0, week 4, and then Q8W (N = 375); or placebo (N = 372) through week 24, after which patients in the placebo group crossed over to guselkumab Q4W. Fatigue was measured as a secondary endpoint using the Functional Assessment of Chronic Illness Therapy (FACIT)-Fatigue instrument (range 0–52, higher scores indicate less fatigue). Least-squares mean changes in FACIT-Fatigue scores were compared between treatments using a mixed-effect model for repeated measures. Mediation analysis was used to adjust for indirect effects on fatigue deriving from improvement in other outcomes, including ≥20% improvement in American College of Rheumatology criteria (ACR20; prespecified), minimal disease activity (MDA; post hoc), or C-reactive protein (CRP; post hoc). Results Baseline mean (SD) FACIT-Fatigue scores in DISCOVER-1 (N = 381) and DISCOVER-2 (N = 739), ranging from 29.1 (9.5) to 31.4 (10.1), indicated substantial levels of fatigue relative to the United States general population (43.6 [9.4]). Across studies, mean improvements, and proportions of patients with ≥4-point improvements, in FACIT-Fatigue scores at week 24 with guselkumab Q4W and Q8W (5.6–7.6 and 54–63%, respectively) were larger vs placebo (2.2–3.6 and 35–46%). Improvement in FACIT-Fatigue scores with guselkumab was sustained from week 24 to week 52, with moderate-to-large effect sizes (Cohen’s d = 0.52–0.81 at week 24; 0.66–0.91 at week 52). Mediation analyses demonstrated that substantial proportions of the effects of guselkumab vs placebo on fatigue were direct effect, after adjusting for achievement of ACR20 (Q4W 69–70%, Q8W 12–36% direct effect) or MDA (72–92% across dosing regimens) response or for change in serum CRP concentrations (82–88% across dosing regimens). Conclusions In patients with active PsA, guselkumab 100 mg Q4W or Q8W led to clinically meaningful and sustained improvements in fatigue through 1 year. A substantial portion of the improvement in FACIT-Fatigue scores induced by guselkumab was independent of effects on the achievement of other select outcomes. Trial registration Name of the registry: ClinicalTrials.gov Trial registrations: DISCOVER-1, NCT03162796; DISCOVER-2, NCT03158285 Date of registration: DISCOVER-1, May 22, 2017; DISCOVER-2, May 18, 2017 URLs of the trial registry record: DISCOVER-1, https://clinicaltrials.gov/ct2/show/NCT03162796?term=NCT03162796&draw=1&rank=1 DISCOVER-2, https://clinicaltrials.gov/ct2/show/NCT03158285?term=NCT03158285&draw=2&rank=

    Valproic acid and fatalities in children: a review of individual case safety reports in VigiBase

    Get PDF
    Introduction Valproic acid is an effective first line drug for the treatment of epilepsy. Hepatotoxicity is a rare and potentially fatal adverse reaction for this medicine. Objective Firstly to characterise valproic acid reports on children with fatal outcome and secondly to determine reporting over time of hepatotoxicity with fatal outcome. Methods Individual case safety reports (ICSRs) for children ≤17 years with valproic acid and fatal outcome were retrieved from the WHO Global ICSR database, VigiBase, in June 2013. Reports were classified into hepatotoxic reactions or other reactions. Shrinkage observed-to-expected ratios were used to explore the relative reporting trend over time and for patient age. The frequency of polytherapy, i.e. reports with more than one antiepileptic medicine, was investigated. Results There have been 268 ICSRs with valproic acid and fatal outcome in children, reported from 25 countries since 1977. A total of 156 fatalities were reported with hepatotoxicity, which has been continuously and disproportionally reported over time. There were 31 fatalities with pancreatitis. Other frequently reported events were coma/encephalopathy, seizures, respiratory disorders and coagulopathy. Hepatotoxicity was disproportionally and most commonly reported in children aged 6 years and under (104/156 reports) but affected children of all ages. Polytherapy was significantly more frequently reported for valproic acid with fatal outcome (58%) compared with non-fatal outcome (34%). Conclusion Hepatotoxicity remains a considerable problem. The risk appears to be greatest in young children (6 years and below) but can occur at any age. Polytherapy is commonly reported and seems to be a risk factor for hepatotoxicity, pancreatitis and other serious adverse drug reactions with valproic acid

    High-Resolution Genotyping via Whole Genome Hybridizations to Microarrays Containing Long Oligonucleotide Probes

    Get PDF
    To date, microarray-based genotyping of large, complex plant genomes has been complicated by the need to perform genome complexity reduction to obtain sufficiently strong hybridization signals. Genome complexity reduction techniques are, however, tedious and can introduce unwanted variables into genotyping assays. Here, we report a microarray-based genotyping technology for complex genomes (such as the 2.3 GB maize genome) that does not require genome complexity reduction prior to hybridization. Approximately 200,000 long oligonucleotide probes were identified as being polymorphic between the inbred parents of a mapping population and used to genotype two recombinant inbred lines. While multiple hybridization replicates provided ∼97% accuracy, even a single replicate provided ∼95% accuracy. Genotyping accuracy was further increased to >99% by utilizing information from adjacent probes. This microarray-based method provides a simple, high-density genotyping approach for large, complex genomes

    PIPKIγ Regulates Focal Adhesion Dynamics and Colon Cancer Cell Invasion

    Get PDF
    Focal adhesion assembly and disassembly are essential for cell migration and cancer invasion, but the detailed molecular mechanisms regulating these processes remain to be elucidated. Phosphatidylinositol phosphate kinase type Iγ (PIPKIγ) binds talin and is required for focal adhesion formation in EGF-stimulated cells, but its role in regulating focal adhesion dynamics and cancer invasion is poorly understood. We show here that overexpression of PIPKIγ promoted focal adhesion formation, whereas cells expressing either PIPKIγK188,200R or PIPKIγD316K, two kinase-dead mutants, had much fewer focal adhesions than those expressing WT PIPKIγ in CHO-K1 cells and HCT116 colon cancer cells. Furthermore, overexpression of PIPKIγ, but not PIPKIγK188,200R, resulted in an increase in both focal adhesion assembly and disassembly rates. Depletion of PIPKIγ by using shRNA strongly inhibited formation of focal adhesions in HCT116 cells. Overexpression of PIPKIγK188,200R or depletion of PIPKIγ reduced the strength of HCT116 cell adhesion to fibronection and inhibited the invasive capacities of HCT116 cells. PIPKIγ depletion reduced PIP2 levels to ∼40% of control and PIP3 to undetectable levels, and inhibited vinculin localizing to focal adhesions. Taken together, PIPKIγ positively regulates focal adhesion dynamics and cancer invasion, most probably through PIP2-mediated vinculin activation

    Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA

    Get PDF
    An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization

    Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies

    Get PDF
    The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we indentified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease

    How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    Get PDF
    Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.The authors’ lab is funded by the Wellcome Trust (093008/Z10/Z) and the Medical Research Council (MR/L008246/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.ppat.100525
    corecore