4,929 research outputs found
Uncovering the expression patterns of chimeric transcripts using surveys of affymetrix GeneChips.
BACKGROUND: A chimeric transcript is a single RNA sequence which results from the transcription of two adjacent genes. Recent studies estimate that at least 4% of tandem human gene pairs may form chimeric transcripts. Affymetrix GeneChip data are used to study the expression patterns of tens of thousands of genes and the probe sequences used in these microarrays can potentially map to exotic RNA sequences such as chimeras. RESULTS: We have studied human chimeras and investigated their expression patterns using large surveys of Affymetrix microarray data obtained from the Gene Expression Omnibus. We show that for six probe sets, a unique probe mapping to a transcript produced by one of the adjacent genes can be used to identify the expression patterns of readthrough transcripts. Furthermore, unique probes mapping to an intergenic exon present only in the MASK-BP3 chimera can be used directly to study the expression levels of this transcript. CONCLUSIONS: We have attempted to implement a new method for identifying tandem chimerism. In this analysis unambiguous probes are needed to measure run-off transcription and probes that map to intergenic exons are particularly valuable for identifying the expression of chimeras
Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.
A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays
Using surveys of Affymetrix GeneChips to study antisense expression.
We have used large surveys of Affymetrix GeneChip data in the public domain to conduct a study of antisense expression across diverse conditions. We derive correlations between groups of probes which map uniquely to the same exon in the antisense direction. When there are no probes assigned to an exon in the sense direction we find that many of the antisense groups fail to detect a coherent block of transcription. We find that only a minority of these groups contain coherent blocks of antisense expression suggesting transcription. We also derive correlations between groups of probes which map uniquely to the same exon in both sense and antisense direction. In some of these cases the locations of sense probes overlap with the antisense probes, and the sense and antisense probe intensities are correlated with each other. This configuration suggests the existence of a Natural Antisense Transcript (NAT) pair. We find the majority of such NAT pairs detected by GeneChips are formed by a transcript of an established gene and either an EST or an mRNA. In order to determine the exact antisense regulatory mechanism indicated by the correlation of sense probes with antisense probes, a further investigation is necessary for every particular case of interest. However, the analysis of microarray data has proved to be a good method to reconfirm known NATs, discover new ones, as well as to notice possible problems in the annotation of antisense transcripts
Inhibition of the Bloom's and Werner's syndrome helicases by G-quadruplex interacting ligands.
G-Quadruplex DNAs are folded, non-Watson-Crick structures that can form within guanine-rich DNA sequences such as telomeric repeats. Previous studies have identified a series of trisubstituted acridine derivatives that are potent and selective ligands for G-quadruplex DNA. These ligands have been shown previously to inhibit the activity of telomerase, the specialized reverse transcriptase that regulates telomere length. The RecQ family of DNA helicases, which includes the Bloom's (BLM) and Werner's (WRN) syndrome gene products, are apparently unique among cellular helicases in their ability to efficiently disrupt G-quadruplex DNA. This property may be relevant to telomere maintenance, since it is known that the sole budding yeast RecQ helicase, Sgs1p, is required for a telomerase-independent telomere lengthening pathway reminiscent of the "ALT" pathway in human cells. Here, we show that trisubstituted acridine ligands are potent inhibitors of the helicase activity of the BLM and WRN proteins on both G-quadruplex and B-form DNA substrates. Inhibition of helicase activity is associated with both a reduction in the level of binding of the helicase to G-quadruplex DNA and a reduction in the degree to which the G-quadruplex DNA can support DNA-dependent ATPase activity. We discuss these results in the context of the possible utility of trisubstituted acridines as antitumor agents for the disruption of both telomerase-dependent and telomerase-independent telomere maintenance
Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity
© 2018 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0191416© 2018 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14C (CV14), evaporative cooling vest (CVEV), arm immersion in 10C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.This project is financially supported by the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio
Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions
In contrast to classical physics, quantum mechanics divides particles into
two classes-bosons and fermions-whose exchange statistics dictate the dynamics
of systems at a fundamental level. In two dimensions quasi-particles known as
'anyons' exhibit fractional exchange statistics intermediate between these two
classes. The ability to simulate and observe behaviour associated to
fundamentally different quantum particles is important for simulating complex
quantum systems. Here we use the symmetry and quantum correlations of entangled
photons subjected to multiple copies of a quantum process to directly simulate
quantum interference of fermions, bosons and a continuum of fractional
behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2%
between an ideal model and experimental observation. The approach generalises
to an arbitrary number of particles and is independent of the statistics of the
particles used, indicating application with other quantum systems and large
scale application.Comment: 10 pages, 5 figure
Scanning-probe spectroscopy of semiconductor donor molecules
Semiconductor devices continue to press into the nanoscale regime, and new
applications have emerged for which the quantum properties of dopant atoms act
as the functional part of the device, underscoring the necessity to probe the
quantum structure of small numbers of dopant atoms in semiconductors[1-3].
Although dopant properties are well-understood with respect to bulk
semiconductors, new questions arise in nanosystems. For example, the quantum
energy levels of dopants will be affected by the proximity of nanometer-scale
electrodes. Moreover, because shallow donors and acceptors are analogous to
hydrogen atoms, experiments on small numbers of dopants have the potential to
be a testing ground for fundamental questions of atomic and molecular physics,
such as the maximum negative ionization of a molecule with a given number of
positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants
has been observed in transport studies[6,7]. In addition, Geim and coworkers
identified resonances due to two closely spaced donors, effectively forming
donor molecules[8]. Here we present capacitance spectroscopy measurements of
silicon donors in a gallium-arsenide heterostructure using a scanning probe
technique[9,10]. In contrast to the work of Geim et al., our data show
discernible peaks attributed to successive electrons entering the molecules.
Hence this work represents the first addition spectrum measurement of dopant
molecules. More generally, to the best of our knowledge, this study is the
first example of single-electron capacitance spectroscopy performed directly
with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages,
3 figures, 5 supplementary figure
Do residents’ perceptions of being well-placed and objective presence of local amenities match? A case study in West Central Scotland, UK
Background:<p></p>
Recently there has been growing interest in how neighbourhood features, such as the provision of local facilities and amenities, influence residents’ health and well-being. Prior research has measured amenity provision through subjective measures (surveying residents’ perceptions) or objective (GIS mapping of distance) methods. The latter may provide a more accurate measure of physical access, but residents may not use local amenities if they do not perceive them as ‘local’. We believe both subjective and objective measures should be explored, and use West Central Scotland data to investigate correspondence between residents’ subjective assessments of how well-placed they are for everyday amenities (food stores, primary and secondary schools, libraries, pharmacies, public recreation), and objective GIS-modelled measures, and examine correspondence by various sub-groups.<p></p>
Methods:<p></p>
ArcMap was used to map the postal locations of ‘Transport, Health and Well-being 2010 Study’ respondents (n = 1760), and the six amenities, and the presence/absence of each of them within various straight-line and network buffers around respondents’ homes was recorded. SPSS was used to investigate whether objective presence of an amenity within a specified buffer was perceived by a respondent as being well-placed for that amenity. Kappa statistics were used to test agreement between measures for all respondents, and by sex, age, social class, area deprivation, car ownership, dog ownership, walking in the local area, and years lived in current home.<p></p>
Results:<p></p>
In general, there was poor agreement (Kappa <0.20) between perceptions of being well-placed for each facility and objective presence, within 800 m and 1000 m straight-line and network buffers, with the exception of pharmacies (at 1000 m straight-line) (Kappa: 0.21). Results varied between respondent sub-groups, with some showing better agreement than others. Amongst sub-groups, at 800 m straight-line buffers, the highest correspondence between subjective and objective measures was for pharmacies and primary schools, and at 1000 m, for pharmacies, primary schools and libraries. For road network buffers under 1000 m, agreement was generally poor.<p></p>
Conclusion:<p></p>
Respondents did not necessarily regard themselves as well-placed for specific amenities when these amenities were present within specified boundaries around their homes, with some exceptions; the picture is not clear-cut with varying findings between different amenities, buffers, and sub-groups
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
Moment-Generating Algorithm for Response Time in Processor Sharing Queueing Systems
Response times are arguably the most representative and important metric for measuring the performance of modern computer systems. Further, service level agreements (SLAs), ranging from data centres to smartphone users, demand quick and, equally important, predictable response times. Hence, it is necessary to calculate moments, at least, and ideally response time distributions, which is not straightforward. A new moment-generating algorithm for calculating response times analytically is obtained, based on M/M/1 processor sharing (PS) queueing models. This algorithm is compared against existing work on response times in M/M/1-PS queues and extended to M/M/1 discriminatory PS queues. Two real-world case studies are evaluated
- …
