6,395 research outputs found

    Statistical Evaluation of NDE Reliability in the Aerospace Industry

    Get PDF
    The goal of this paper is to review the statistical methods used in the aerospace industries to evaluate NDE reliability. The techniques presented are consistent with the damage tolerant design and structural maintenance philosophies of the aerospace industry. The first part of this paper establishes the evaluation criteria and discusses the history of NDE reliability evaluations. The second part describes the state-of-the-art analysis methods through examples from the retirement for cause (RFC) inspection system evaluation. The last part of the paper discusses some techniques used to rate operator performance and deal with false calls

    Chemistry:No turning back for motorized molecules

    Get PDF

    A multiscale modeling framework for Scenario Modeling: Characterizing the heterogeneity of the COVID-19 epidemic in the US.

    Get PDF
    The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142 subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration, human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH, and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7) as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha variant had on the effective reproduction number at the state level. Overall, we show that our multiscale modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response in the US

    Comparison between the for-profit human milk industry and nonprofit human milk banking: Time for regulation?

    Get PDF
    Human milk (HM) is a highly evolutionary selected, complex biofluid, which provides tailored nutrition, immune system support and developmental cues that are unique to each maternal-infant dyad. In the absence of maternal milk, the World Health Organisation recommends vulnerable infants should be fed with screened donor HM (DHM) from a HM bank (HMB) ideally embedded in local or regional lactation support services. However, demand for HM products has arisen from an increasing awareness of the developmental and health impacts of the early introduction of formula and a lack of prioritisation into government-funded and nonprofit milk banking and innovation. This survey of global nonprofit milk bank leaders aimed to outline the trends, commonalities and differences between nonprofit and for-profit HM banking, examine strategies regarding the marketing and placement of products to hospital and public customers and outline the key social, ethical and human rights concerns. The survey captured information from 59 milk bank leaders in 30 countries from every populated continent. In total, five companies are currently trading HM products with several early-stage private milk companies (PMCs). Products tended to be more expensive from PMC than HMB, milk providers were financially remunerated and lactation support for milk providers and recipients was not a core function of PMCs. Current regulatory frameworks for HM vary widely, with the majority of countries lacking any framework, and most others placing HM within food legislation, which does not include the support and care of milk donors and recipient prioritisation. Regulation as a Medical Product of Human Origin was only in place to prevent the sale of HM in four countries; export and import of HM was banned in two countries. This paper discusses the safety and ethical concerns raised by the commodification of HM and the opportunities policymakers have globally and country-level to limit the potential for exploitation and the undermining of breastfeeding

    Do group 1 metal salts form deep eutectic solvents?

    Get PDF
    Mixtures of metal salts such as ZnCl2, AlCl3 and CrCl3·6H2O form eutectic mixtures with complexing agents, such as urea. The aim of this research was to see if alkali metal salts also formed eutectics in the same way. It is shown that only a limited number of sodium salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of these mixtures showed eutectic behaviour but the liquids showed the physical properties similar to the group of mixtures classified as deep eutectic solvents. This study focussed on four sodium salts: NaBr, NaOAc, NaOAc·3H2O and Na2B4O7·10H2O. The ionic conductivity and viscosity of these salts with glycerol were studied, and it was found that unlike previous studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, most of the sodium salts increased the viscosity. This suggests that sodium salts have a structure making effect on glycerol. This phenomenon is probably due to the high charge density of Na+, which coordinates to the glycerol. 1H and 23Na NMR diffusion and relaxation methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, and probe the effect of water on some of these systems. The results reveal a complex dynamic behaviour of the different species within these liquids. Generally, the translational dynamics of the 1H species, probed by means of PFG NMR diffusion coefficients, is in line with the viscosity of these liquids. However, 1H and 23Na T1 relaxation measurements suggest that the Na-containing species also play a crucial role in the structure of the liquids.A. P. Abbott would like to thank the Royal Society for funding the work through the Brian Mercer Award. C. D’Agostino would like to acknowledge Wolfson College, Cambridge, for supporting his research activities. S. Davis thanks EPSRC for funding a PhD studentship.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C6CP05880

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    Foreigners Traveling to the U.S. for Transplantation May Adversely Affect Organ Donation: A National Survey

    Full text link
    The aims of this study were (1) to determine attitudes among the American public regarding foreigners coming to the United States for the purposes of transplantation, and (2) to investigate the impact this practice might have on the public's willingness to donate organs. A probability-based national sample of adults age ≥18 was asked whether people should be allowed to travel to the United States to receive a transplant, and whether this practice would discourage the respondents from becoming an organ donor. Among 1049 participants, 30% (95% CI 25–34%) felt that people should not be allowed to travel to the United States to receive a deceased donor transplant, whereas 28% felt this would be acceptable in some cases. Thirty-eight percent (95% CI 33–42%) indicated that this practice might prevent them from becoming an organ donor. In conclusion, deceased-donor transplantation of foreigners is opposed by many Americans. Media coverage of this practice has the potential to adversely affect organ donation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79295/1/j.1600-6143.2010.03111.x.pd

    Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue

    Get PDF
    At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP(+) C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit(+)), endothelial cells (CD31(+), CD34(+)), and mesenchymal cells (CD90(+)). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used

    Cross-species gene expression analysis of species specific differences in the preclinical assessment of pharmaceutical compounds

    Get PDF
    Animals are frequently used as model systems for determination of safety and efficacy in pharmaceutical research and development. However, significant quantitative and qualitative differences exist between humans and the animal models used in research. This is as a result of genetic variation between human and the laboratory animal. Therefore the development of a system that would allow the assessment of all molecular differences between species after drug exposure would have a significant impact on drug evaluation for toxicity and efficacy. Here we describe a cross-species microarray methodology that identifies and selects orthologous probes after cross-species sequence comparison to develop an orthologous cross-species gene expression analysis tool. The assumptions made by the use of this orthologous gene expression strategy for cross-species extrapolation is that; conserved changes in gene expression equate to conserved pharmacodynamic endpoints. This assumption is supported by the fact that evolution and selection have maintained the structure and function of many biochemical pathways over time, resulting in the conservation of many important processes. We demonstrate this cross-species methodology by investigating species specific differences of the peroxisome proliferatoractivator receptor (PPAR) a response in rat and human

    Cell lineage transport: a mechanism for molecular gradient formation

    Get PDF
    Gradient formation is a fundamental patterning mechanism during embryo development, commonly related to secreted proteins that move along an existing field of cells. Here, we mathematically address the feasibility of gradients of mRNAs and non-secreted proteins. We show that these gradients can arise in growing tissues whereby cells dilute and transport their molecular content as they divide and grow, a mechanism we termed ‘cell lineage transport.' We provide an experimental test by unveiling a distal-to-proximal gradient of Hoxd13 in the vertebrate developing limb bud driven by cell lineage transport, corroborating our model. Our study indicates that gradients of non-secreted molecules exhibit a power-law profile and can arise for a wide range of biologically relevant parameter values. Dilution and nonlinear growth confer robustness to the spatial gradient under changes in the cell cycle period, but at the expense of sensitivity in the timing of gradient formation. We expect that gradient formation driven by cell lineage transport will provide future insights into understanding the coordination between growth and patterning during embryonic development
    corecore