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1 Introduction

It is a common belief now that whatever the Grand Unified Theory is, it is a version of

supersymmetric field theory. Incorporating supersymmetry is the only known natural way

to resolve the hierarchy problem.

An excellent playground to study supersymmetric dynamics is provided by SQM mod-

els. The simplest nontrivial such model introduced in [1] has the supercharges

Q = ψ[p+ iW ′(x)] , Q̄ = ψ̄[p− iW ′(x)] (1.1)

and the Hamiltonian

H =
1

2

[

p2 + (W ′)2 +W ′′(x)(ψ̄ψ − ψψ̄)
]

. (1.2)

In classical theory, p, x are the usual conjugated phase space variables and ψ̄, ψ are canon-

ically conjugated Grassmann variables. In quantum theory (which we will be mainly con-

cerned with), x and ψ are still usual real and complex Grassmann numbers, while p and ψ̄

become differential operators, p = −i∂/∂x, ψ̄ = ∂/∂ψ.
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W (x) is an arbitrary function. The operators (1.1), (1.2) satisfy the simplest super-

symmetry algebra,

Q2 = Q̄2 = 0 , {Q̄,Q} = 2H . (1.3)

Since [1], a lot of other models have been constructed. Many such models have a

rather complicated form. Some of them have extended supersymmetries — several pairs

of complex supercharges Qa, Q̄a satisfying the algebra1

{Qa, Qb} = 0 , {Qa, Q̄b} = 2δabH , a, b = 1, . . . ,
N
2
. (1.4)

The models involving up to 8 such pairs are known.

One can write the action as an integral over the usual (t, θ, θ̄) or extended (t, θj , θ̄j)

superspace of a usual or extended real superfield expressed via fundamental superfields.

Such action is manifestly invariant under supersymmetry transformations. The problem is,

however, that many such superfields and many such invariant actions can be constructed.

In this paper, we suggest an alternative approach. Instead of working in superspace,

we restrict ourselves with supercharges and Hamiltonians expressed in components. Then

we observe that, in the all studied cases, an SQM system can be obtained from the basic

simple system describing the free flat complex dynamics,

Q =
√
2ψaπa, Q̄ =

√
2ψ̄aπ̄a, H = π̄aπa ,

(a = 1, . . . , d) , (1.5)

where d is the complex dimension.

It is achieved by a combination of two operations: (i) Hamiltonian reduction and (ii)

similarity transformation of supercharges.

As a warm-up, let us obtain in this way the model (1.1), (1.2). We start from the

model (1.5) with d = 1. The complex momentum π has the real and imaginary parts,

π = (px + ipy)/
√
2. The wave functions depend on x, y and the Grassmann holomorphic

variable ψ. At the first step, we impose the constraint pyΨ = −i∂Ψ/∂y = 0. We are allowed

to do it as py commutes with the Hamiltonian. The reduced Hamiltonian is just p2x/2.

The constraint commutes not only with the Hamiltonian, but also with the super-

charges. This implies that the reduced system enjoys the same N = 2 supersymmetry as

the parent one. The reduced supercharges are

Qfree = pxψ, Q̄
free = pxψ̄ .

It is just the free (W = 0) version of Witten’s model (1.1), (1.2).

The potential can be introduced at the second step by a similarity transformation.

Indeed, the supercharges (1.1) can be expressed via the free ones as

Q = eWQfreee−W , Q̄ = e−W Q̄freeeW . (1.6)

1Following the commonly adopted nowadays convention, N denotes the total number of real conserved

supercharges. For the models with physical supersymmetry of the spectrum that involve (at least) double

degeneracy of all excited states, N is always even.
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The transformed supercharges Q, Q̄ are nilpotent if Qfree, Q̄free are nilpotent and they hence

satisfy the same supersymmetry algebra. Note that this is a similarity transformation for

the supercharges. The operator eW is not unitary such that Q and Q̄ are transformed in a

different way. As for the Hamiltonian {Q̄,Q}, it is not related to the free Hamiltonian by

any similarity transformation and has a distinct spectrum.

This example is trivial, but we will see in the next two sections that this philosophy

works in many other not so trivial cases and a complicated SQM model can be obtained

from the free model (1.5) by performing a proper Hamiltonian reduction and a proper

similarity transformation.

2 N = 2 sigma models

2.1 Dolbeault complex

Let us concentrate on Q and perform the following similarity transformation of the free

supercharge in (1.5),

Q = eRQfreee−R (2.1)

where R is not just a function of coordinates as in (1.6), but an operator, R = ωabψaψ̄b.

The supercharge Q̄ will then be rotated with the operator e−R†
. (It will be convenient

for us later to introduce Q̄ rotated with an extra scalar function reflecting the presence of

a nontrivial Hilbert space measure in the rotated system — see eq.(2.10) below. But let

us keep for a moment Q and Q̄ Hermitially conjugate in the naive sense, without taking

into account the measure.) When ωab is anti-Hermitian, eR is unitary, Q, Q̄, and H are

rotated by the same operator, and this boils down to a canonical transformation of the

phase space variables. On the other hand, when ωab is Hermitian, the supercharges Q and

Q̄ are transformed differently, and their anticommutator is nontrivial.

The calculation can be done using the Hadamard formula,

eRXe−R = X + [R,X] +
1

2
[R, [R,X]] + . . . (2.2)

In our case, this implies

eRψce
−R = ψa (e

ω)ac , (2.3)

eR∂ce
−R = ∂c + (eω)ae

(

∂ce
−ω
)

eb
ψaψ̄b . (2.4)

We thus derive

Q =
√
2ψd (e

ω)dc
[

πc − i (eω)ae
(

∂ce
−ω
)

eb
ψaψ̄b

]

. (2.5)

The associated Hamiltonian has the kinetic term with a nontrivial Hermitian metric,

Hkin =
(

eω
†

eω
)

ab
π̄aπb →

(

eω
†

eω
)k̄j

π̄k̄πj . (2.6)
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The matrices e±ω, e±ω†
can then be interpreted as the complex vielbeins,

(eω)ac → eja,
(

e−ω
)

ca
→ eaj ,

(

eω†
)

ca
→ ej̄ā,

(

e−ω†
)

ac
→ eāj̄ (2.7)

When ω is Hermitian, the vielbein matrix eja is also Hermitian. For generic ω, the vielbein

is a generic complex matrix, with the anti-Hermitian part of ω corresponding to tangent

space rotations.

One can note now that the supercharge (2.5) can be rewritten as

Q =
√
2ψj

(

πj + iΩj,b̄aψaψ̄b

)

(2.8)

with Ωk,b̄a being the so called Bismut spin connection corresponding to the metric h = eω†eω

and the vielbein e = eω.2

A nontrivial metric introduces a natural covariant measure in the Hilbert space,

µ = deth
∏

j

dzjdz̄j . (2.9)

It is convenient to define Q̄ to be Hermitially conjugate to Q with respect to this measure,

Q̄ = (deth)−1Q† deth , (2.10)

where Q† is the “naive” Hermitian conjugation.

The supercharges thus obtained exactly coincide with the supercharges (3.26) in ref. [4],

if setting there W = ln deth/4. These supercharges were obtained from Nöther super-

charges of a certain SQM model with a nontrivial superspace Lagrangian [4, 6],

L = −1

4
hjk̄DZ

jD̄Z̄ k̄ +W (Z, Z̄) , (2.11)

where Zj and Z̄j are chiral d = 1 superfields and D, D̄ are supersymmetric covariant

derivatives.

As was explained in details in [4], the Hilbert space of the functions Ψ(zj , z̄j , ψa) with

the measure (2.9) can be mapped onto the space of holomorphic p-forms realizing the

Dolbeault complex. The supercharges (2.8), (2.10) can then be mapped to the exterior

holomorphic derivative operator ∂ and its Hermitian conjugate.

As was just mentioned, the supercharges (2.8) and (2.10) correspond to a particular

choice of W in the Lagrangian (2.11). One can, however, obtain the model with any W by

applying an extra similarity transformation,

Q→ eGQe−G (2.12)

2The Bismut spin connection is related to the Bismut affine connection [2, 3], which is a torsionfull

affine connection such that (i) the covariant derivatives of the metric and the complex structure matrix

vanish; (ii) the torsions are completely antisymmetric. See [4, 5] for all definitions and notations. To avoid

a confusion, note also here that the Bismut spin connection does not coincide with the structure −ela(∂jebl )
entering (2.5), but involves extra terms. These terms vanish when multiplying by ψjψa. cf. eq. (3.13)

of ref. [4].
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with G = W − 1
4 ln deth.

3 This gives what mathematicians call a twisted holomorphic

Dolbeault complex.

Another distinguished choice, besides W = 1
4 ln deth corresponding to G = 0, is

W = −1
4 ln deth corresponding to G = −1

2 ln deth. This amounts to the overall simi-

larity transformation with exp{−ωabψ̄bψa} and gives the antiholomorphic untwisted Dol-

beault complex.

In the physical language, this complex describes the dynamics of a Dirac operator

in the presence of Abelian gauge field, AM = {−i∂mW, i∂m̄W}. The models with non-

Abelian gauge fields can be obtained from the model (2.11) with W = 0 by a similarity

transformation (2.12) with a matrix-valued G.

The supercharge Q can be further rotated with a holomorphic4 operator

exp
{

Bjkψ
jψk + Bjklmψ

jψkψlψm + . . .
}

(2.13)

One obtains in this way complex sigma models with torsions studied in [8].

2.2 De Rham complex

Note first that, representing πa = [p
(a)
x + ip

(a)
y ]/

√
2 in (1.5) and imposing d constraints

p
(a)
y Ψ = 0, we obtain the model describing free flat real dynamics. The supercharges are

Q = pAψA, Q̄ = pAψ̄A . (2.14)

(with pA ≡ p
(a)
x , A = 1, . . . , d).

Let us apply now a similarity transformation (2.1) with

R = ωABψAψ̄B . (2.15)

When ωAB is anti-Hermitian, this amounts to a unitary rotation. New nontrivial models

are obtained for Hermitian ωAB.

Let first ωAB be real and symmetric. By the same token as in the complex case,

one obtains

Q = ψD (eω)DC

[

pC − i
(

eω∂Ce
−ω
)

AB
ψAψ̄B

]

≡ ψM
(

pM − iΩM,ABψAψ̄B

)

, (2.16)

where ψM = eMA ψA with the real vielbeins

eMA = (eω) M
A , eMA =

(

e−ω
)

MA
(2.17)

giving the metric

gMN =
(

e−2ω
)

MN
. (2.18)

3For a compact complex manifold, there is no global expression for the metric valid everywhere. One

should introduce charts. The expressions like ln deth are in fact not nonsingular functions on the manifold,

but should be understood as sections of a certain line (Abelian) fiber bundle. Matching the local expressions

for these sections in the regions where the charts overlap imposes the restrictions on W associated with the

quantization of topological charge. If these restrictions are not fulfilled, supersymmetry is lost [7].
4It is holomorphic with respect to fermion variables, but Bjk etc. are arbitrary functions of zj and z̄j .
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Profiting from anticommutativity of ψM and ψA, we have expressed the 3-fermion structure

in the supercharge via the spin connection

ΩM,AB = eAN

(

∂Me
N
B + ΓN

MKe
K
B

)

. (2.19)

The supercharge (2.16) is well known. It can be mapped to the exterior derivative

operator d of the de Rham complex [9, 10]. The supercharge Q̄ is convenient to define as

Q̄ = (det g)−1/2Q†(det g)1/2 such that it is Hermitially conjugate to Q with the Riemann

covariant measure
√
det g. It can be presented as

Q̄ = ψ̄M
(

pM − iΩM,ABψ̄AψB

)

. (2.20)

The Lagrangian of this model can be easily written in terms of d real superfields

XM = xM + θψM + ψ̄M θ̄ + FMθθ̄ . (2.21)

It has the form [11]

L =
1

2

∫

dθdθ̄ gMN (X)DXM D̄XN . (2.22)

The de Rham complex can be deformed by adding the potential, which amounts to a

similarity transformation Q→ eWQe−W (in contrast to the complex case, here W must be

a well-defined scalar function) or adding torsions [8, 12] which amounts to a holomorphic

similarity transformation with the operator exp{BMNψ
MψN + · · · }.

Consider now the case of generic Hermitian ωAB. The supercharges can, again, be

represented as in (2.16), but neither the vielbeins (2.17) nor the “metric” (2.18) are real

anymore. As is shown in [13], the corresponding Lagrangian has the same form as in (2.22),

but with the complex Hermitian gMN . Complexity of the metric means that this system

cannot thus be interpreted anymore as a de Rham complex. It is something new.

It is further shown in [13] that this new complex can be obtained by a Hamiltonian

reduction of the Dolbeault complex for some special complex manifolds whose metric does

not depend on imaginary parts of complex coordinates. Indeed, consider a manifold of the

complex dimension d with isometries corresponding to the imaginary coordinate shifts. We

can then impose d constraints GjΨ = ∂Ψ/∂(Im zj) = 0. These constraints commute with

the Dolbeault Hamiltonian (allowing for the Hamiltonian reduction) and the supercharges

(meaning that the reduced system enjoys the same supersymmetry as the original one).

A not so difficult analysis shows that, after such reduction, the supercharge (2.8) (it is

convenient to write it in terms of the fermion variables with world indices ψj) goes over

into (2.16), written in terms of ψM , ψ̄M .

In other words, the model of this type (we called it a quasicomplex sigma model [13])

can be obtained from the basic model (1.5) by a subsequent application of two operations:

similarity transformation and Hamiltonian reduction. And, as illustrated in figure 1, the

result does not depend on the order in which these operations are performed.

We would also like to note here that the supercharges Q =
√
2ψaπa and Q = ψApA can

in principle be rotated by a similarity transformations with antiholomorphic operators like

R = exp{CABψ̄Aψ̄B} . (2.23)

Such models were never considered, and it would be interesting to do so.

– 6 –
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FREE COMPLEX

FREE REAL

QUASICOMPLEX

DOLBEAULT

Figure 1. A rhombus of sigma models. The solid arrows stand for a similarity transformation and

the dashed arrows — for a Hamiltonian reduction.

3 Extended supersymetries

An arbitrary similarity transformation (2.1) leaves the supercharge Q nilpotent and hence

keeps supersymmetry. For a model with extended supersymmetries, it is not always the

case. I.e. the minimal N = 2 supersymmetry is always kept, but if we want to preserve

extended supersymmetries, the operator of similarity transformation should satisfy certain

extra conditions. The same concerns the Hamiltonian reduction procedure. If we want the

reduced model to keep all the supersymmetries of the original one, the constraints should

commute with all supercharges.

Consider some examples.

3.1 Kähler sigma models

Consider the real free dynamics with the supercharges (2.14) and the Hamiltonian H =

p2A/2. Assume that the dimension D is even. It is easy to see that one can add extra pairs

of nilpotent supercharges whose anticommutator gives the same Hamiltonian and which

commute with Q, Q̄. They form thereby together with (2.14) an extended supersymmetry

algebra. Each such pair of supercharges can be represented as

S = pAIABψB, S̄ = pAIABψ̄B . (3.1)

where IAB is a real antisymmetric matrix satisfying the condition I2 = −1.5

Suppose that there is only one such extra pair. It is convenient to introduce complex

coordinates {za=1,...,D/2, z̄a=1,...,D/2} (the eigenvectors of I), trade ψA for χaα, α = 1, 2 and

5It is, of course, recognizable as a flat complex structure matrix.
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deal with the supercharges6

Tα =
√
2πaχaα, T̄α =

√
2π̄aχ̄aα . (3.2)

They represent the following linear combinations of Q,S, Q̄, S̄,

T1 =
Q+ iS√

2
, T2 =

Q̄+ iS̄√
2

, T̄1 =
Q̄− iS̄√

2
, T̄2 =

Q− iS√
2

. (3.3)

Let us perform now a similarity transformation

Tα → eωabχaβ χ̄bβTαe
−ωabχaβ χ̄bβ (3.4)

with a Hermitian ωab. In the full analogy with (2.5), (2.8), we obtain

Tα =
√
2χdα (e

ω)dc
[

πc − i (eω)ae
(

∂ce
−ω
)

eb
χaβχ̄bβ

]

, (3.5)

which can be represented as

Tα =
√
2χj

α

(

πj + iΩj,b̄aχaβχ̄bβ

)

. (3.6)

However, in a generic case, the supercharges (3.6) and their conjugates do not form the

extended supersymmetry algebra — the anticommutator {T1, T̄2} does not vanish and

{T2, T̄2} does not coincide with {T1, T̄1}. But, for some special ω when the metric eω
†
eω is

Kähler, the N = 4 superalgebra holds [14–16]. In this case, Ωj,b̄a = ek̄
b̄
∂je

ā
k̄
entering (3.6)

are the standard torsionless spin connections.

As is written in (3.3), the supercharge T1 is expressed via Q and S, while the super-

charge T2 is expressed via Q̄ and S̄. This means that the similarity transformation (3.4)

of Tα corresponds to a rather complicated transformation (not a similarity one) of the

“original” supercharges Q,S.

Alternatively, one can rotate, as we have seen, the flat supercharge Q with the opera-

tor (2.15) to obtain the de Rham supercharge (2.16). If the metric thus obtained is Kähler,

the same similarity transformation applied to S gives us the second pair of supercharges,

keeping the N = 4 supersymmetry. Indeed, the result of such rotation of Sflat is

Srotated = ψMI N
M

(

pN − iΩN,ABψAψ̄B

)

. (3.7)

An accurate proof of the fact that, for Kähler manifolds, the operators (3.7) and (2.16)

together with their conjugates satisfy the same commutation relations of the N = 4 super-

algebra as the flat supercharges is presented in the appendix.

Note that this similarity transformation of Q and S corresponds to a complicated

transformation of Tα and T̄α.

6When D = 2 and IAB = ǫAB , the explicit conventional form of the combinations entering (3.2) is

χ1 =
1√
2
(ψ1 + iψ2), χ2 =

1√
2
(ψ̄1 + iψ̄2), π =

1√
2
(p1 − ip2)

and complex conjugates. This is trivially generalized to any even D, if choosing I = diag(ǫ, . . . , ǫ).
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3.2 Hyper-Kähler sigma models

In flat space of real dimension 4 or multiple integer of 4, D = 4m, one can write three

additional pairs of supercharges,

S1,2,3 = pAI
1,2,3
AB ψB, S̄1,2,3 = pAI

1,2,3
AB ψ̄B . (3.8)

associated with three complex structures I1,2,3 satisfying the quaternionic algebra.

IaIb = −δab + ǫabcIc . (3.9)

By an orthogonal transformation, one can bring them into a canonical form

(Ia)AB = diag{−ηaµν , . . . ,−ηaµν} , (3.10)

where ηaµν are ’t Hooft symbols.

The supercharges Q, Q̄, Sa, S̄a form the N = 8 supersymmetry algebra, which the flat

Hamiltonian H = p2A/2 thus enjoy. In a special case when the metric of the manifold corre-

sponding to the de Rham supercharges (2.16) obtained after a similarity transformation of

the flat supercharge Q is hyper-Kähler, the Hamiltonian thus obtained also admits 3 extra

pairs of conserved supercharges [17]. Three of these six extra supercharges are obtained

from the flat supercharges Sa in (3.8) by the same similarity transformation as the one

applied to the supercharge Q. Their explicit form is

Sa
rotated = ψMIa N

M

(

pN − iΩN,ABψAψ̄B

)

. (3.11)

The explicit proof of the fact that, in the hyper-Kähler case, the supercharges (3.11) and

their conjugates form together with the supercharge (2.16) and its conjugate the standard

N = 8 superalgebra is given in the appendix.

Alternatively, in the full analogy with the Kähler case, the supercharges (3.8) together

with (2.14) can be rearranged by defining

Tα =
(

γµp
k
µχ

k
)

α
(3.12)

and their conjugates T̄α, In the expression above, µ, α = 1, 2, 3, 4, k = 1, . . . ,m, γµ are

Euclidean 4-dimensional γ-matrices and χk
α are Dirac 4-component spinors.

One can then rotate Tα with a matrix eR = exp{ωkqχ
k
αχ̄

q
α} and, when the metric

eω
†
eω thus obtained is hyper-Kähler, arrive at the hyper-Kähler supercharges in the form

written in [18].

This similarity transformation of Tα corresponds to a complicated transformation of

Q, Q̄, Sa, S̄a. On the other hand, the similarity transformation of Q and Sa discussed above

corresponds to a complicated transformation of Tα, T̄α.

3.3 HKT and OKT

Kähler and hyper-Kähler sigma models represent special cases of the generic de Rham

sigma model that admit extra supercharges. There are also special complex Dolbeault

– 9 –



J
H
E
P
0
5
(
2
0
1
3
)
1
1
9

sigma models admitting extra supersymmetries. In particular, in flat complex space of

even complex dimension d = 2m, one can add to the supercharges (1.5), the supercharges

S =
√
2ǫabψ

k
a π̄

k
b , S̄ =

√
2ǫabψ̄

k
aπ

k
b . (3.13)

Performing a similarity transformation (2.1) with a special class of R respecting N = 4

supersymmetry, one obtains the so called HKT sigma models [19, 20]. To see that, consider

the simplest d = 2 case. By introducing real and imaginary parts ψA=1,2,3,4 of ψa=1,2, we

can bring (1.5), (3.13) to a more familiar form including four pairwise anticommuting

Hermitian supercharges [21, 22],

Q = ψApA , Sa = −ηaABψApB , (3.14)

where a = 1, 2, 3 and ηaAB are ‘t Hooft symbols [23].

This looks similar to (3.8), but the variables ψA are now Hermitian. They satisfy

the Clifford algebra, {ψA, ψB} = δAB and can be mapped to gamma matrices. For our

approach, we need, however the holomorphic supercharges Q,S in (1.5), (3.13). It is they

who are going to be rotated with a similarity transformation (2.1), the supercharges Q̄, S̄

being transformed with e−R†
. Let us choose R = g(x)ψaψ̄a. We derive

Q →
√
2fψa

(

πa +
i∂af

f
ψcψ̄c

)

,

S →
√
2fǫabψa

(

π̄b +
i∂̄bf

f
ψcψ̄c

)

. (3.15)

with f = eg. The corresponding metric is conformally flat, ds2 = e−2gdx2µ, the simplest

HKT metric.7 The supercharges (3.15) (derived first in [25]) together with their conjugates

satisfy the N = 4 superalgebra.

Dolbeault models enjoying N = 8 supersymmetry are known as OKT manifolds. Their

real dimension is a multiple integer of 8. Indeed, flat 8-dimensional space admits 8 anti-

commuting Hermitian supercharges: the supercharge Q = pAψA, where A = 1, . . . , 8 and

ψa are now real, and the supercharges Sa=1,...,7 = (Γa)ABpAψB, where Γ
a are 7-dimensional

real antisymmetric gamma matrices. One of the convenient representations for the latter is

Γ1,2,3 =

(

−η̄a 0

0 η̄a

)

, Γ4,5,6 =

(

0 ηa

ηa 0

)

, Γ7 =

(

0 1

−1 0

)

, (3.16)

7The formal definition is the following [24]. The manifold is called HKT if it admits three complex

structures satisfying (3.9) which are covariantly constant with respect to one and the same affine connection.

Generically (and, in particular, for conformally flat 4-dimensional manifolds), this connection (the Bismut

connection) involves torsions. In some special cases, the torsions vanish, the Bismut connection boils down

to the usual Levy-Civita connection and the HKT (i.e. hyper-Kähler with torsion ) manifolds boil down

hyper-Kähler manifolds.
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One can also relate the matrix elements in (3.16) to the structure constants of octonion

algebra [20] — that is why the name OKT (octonionic Kähler with torsion) was choosen.8

The simplest example of a nontrivial OKT manifold is a conformally flat 8-dimensional

manifold where the conformal factor f(xM ) represents a harmonic function, i.e. f(xM ) =

1 + C|xM |−7.

The OKT models represent a particular case of Dolbeault models with extra holomor-

phic torsions (see [27] for a detailed discussion). Thus, they can be obtained, as discussed

above, from the flat models of the corresponding dimension by a similarity transformation

of the supercharge Q in (1.5). It remains to be seen whether one can conveniently define

in this case three other complex supercharges obtained from the flat ones by the same

similarity transformation.

3.4 Reduced models

Consider an HKT model on a 4-dimensional conformally flat manifold with the super-

charges (3.15). Suppose that the conformal factor f(xM ) does not depend on one of the

variables, say, x4. It is then straightforward to observe that the operator p̂4 commutes

with the supercharges and the Hamiltonian and can thus be used to perform Hamiltonian

reduction. As a result, we obtain a N = 4 supersymmetric QM model describing dynamics

on a conformally flat 3-dimensional manifold. This model9 was first constructed in [29]

and described in superfield language in [30, 31]. Taking a 4m dimensional HKT with the

metric not depending on m variables, one obtains a generalised 3m-dimensional model

considered in [30].

One can, of course, consider many other HKT models (or, in the language of [28],

the models with several root [32] (4, 4, 0) multiplets) living on manifolds with various

isometries. Factorizing over these isometries gives a multitude of models. Hamiltonian

reduction of the model in a flat or conformally flat 4-dimensional space with respect to its

U(1) isometry was considered in [33]. One obtains in such a way the N = 4 models with an

extra magnetic monopole [29, 34]. For another example, one can take a flat N = 4 model

endowed with a self-dual instanton field,10

Aµ =
2ηaµνxνt

a

x2 + ρ2
(3.17)

8In contrast to HKT, the matrices (3.16) cannot, of course, satisfy non-associative octonion algebra.

Moreover, one cannot choose among the matrices (3.16) three matrices satisfying the quaternionic alge-

bra (3.9). This means that an OKT manifold need not to be an HKT manifold. Note also that one can

deform the flat model with breaking N = 8 supersymmetry but keeping the N = 4 supersymmetry associ-

ated with the unity matrix and, say, the matrices Γ1,2,3. One obtains in this way a class of N = 4 models,

so called Clifford models that are not HKT [6, 20, 26, 27].
9A (3, 4, 1)-model in the notation of [28], where the first numeral stands for the number of bosonic

dynamic degrees of freedom, the second — the number of fermionic d.o.f. and the third — the number of

auxiliary fields in superfield description.
10It was mentioned above that a non-Abelian gauge field can be brought about by a matrix-valued

similarity transformation. The transformations of this kind that give a self-dual gauge field respect the

N = 4 supersymmetry of the flat model [25].
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The supercharges of this model were presented in ref. [25] in the form

Qα = (σµψ̄)α(pµ −Aµ) , Q̄α = (ψσ†µ)
α(pµ −Aµ) (3.18)

with the following conventions (an Euclidean counterpart of the Wess and Bagger nota-

tions [35]):

(i) (σµ)αβ̇ = {i,σ}αβ̇ , (σ
†
µ)β̇α = {−i,σ}β̇α.

(ii) The fermion variables ψα̇ and ψ̄α̇ = (ψα̇)
† ({ψ̄α̇, ψβ̇} = δα̇

β̇
) carry only the dotted

indices (in constrast to the supercharges (3.18) having undotted indices; in Euclidean

space, the SU(2) groups acting on the dotted and undotted spinors are completely

unrelated).

(iii) The indices are raised and lowered with ǫα̇β̇ = −ǫα̇β̇.

One can observe now that the supercharges (3.18) and hence the Hamiltonian commute

with the SU(2) generators,

L̂a = 2ta − iηaµν

(

xµ∂ν +
1

4
ψσ†µσνψ̄

)

. (3.19)

Performing the Hamiltonian reduction with respect to L̂a gives us a (1, 4, 3) model with

only one dynamic bosonic degree of freedom. At the distances much larger than the in-

stanton size ρ , the Hamiltonian thus obtained should go over to the conformal matrix

Hamiltonian derived in [36],

H =
1

2

(

p2 +
3

4x2

)

+
2ita (ψσaψ̄)

x2
. (3.20)

In that paper, also a 2-center model not enjoying the rotational symmetry was worked

out. Probably, it can also be obtained from a certain known model by applying two opera-

tions (similarity transformation and Hamiltonian reduction). It would be interesting to see

whether it is the case and, if yes, in a what particular way. The same concerns many partic-

ular SQM models with N = 4 and N = 2 supersymmetries constructed in recent [37, 38].

They were constructed using “semi-dynamic” spin variables technique [39–45]. The math-

ematical structure of these models, their raison d’être is, however, not clear by now. It

would be interesting to find out by what particular operations from what particular known

models are they obtained.

The OKT models with one or several root (8, 8, 0)-multiplets also generate many

different models after Hamiltonian reduction. One of them is the beautiful N = 8 (5, 8,

3)-model with the metric ds2 = (1 + C/r3)(dxM )2 [46–48].11

There are many others.

11It enjoys O(5) = Sp(4) symmetry and has many common features with the (3, 4, 1) model of ref. [29]

which is 3-dimensional and knows about O(3) = Sp(2). That is why we called this type of sigma models

symplectic.
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4 Gauge models

It is known since Dirac that gauge theories can be interpreted as Hamiltonian systems

involving first class constraints, the operators Ĝa commuting with the Hamiltonian. One

then performs a Hamiltonian reduction with respect to Ĝa such that the Hilbert space of

the large system is reduced to the small physical Hilbert space including only the wave

functions annihilated under the action of Ga. This is rather similar to the ideology of the

present paper, but there is also an important dictinction.

Consider a supersymmetric field theory and assume that nothing depends on spatial

coordinates (such dimensional reduction is, of course, a variety of Hamiltonian reduction).

We obtain a certain quantum mechanical system. To give a nontrivial enough but not

too complicated example, consider the dimensionally reduced (2+1)-dimensional super-

symmetric Yang-Mills model with SU(2) gauge group. The supercharges of the model are

Q = Πa
−ψ

a + iBaψ̄a, Q̄ = Πa
+ψ̄

a − iBaψa , (4.1)

where Πa
± = Πa

1 ± iΠa
2 are holomorphic combinations of canonical momenta, ψa and ψ̄a are

canonically conjugated fermion variables, and

Ba = ǫabcǫjkA
b
jA

c
k = − i

2
ǫabcAb

−A
c
+ (4.2)

is the non-Abelian magnetic field strength. The coupling constant dependence is suppressed

by choosing proper units.

The Hamiltonian H = {Q̄,Q} has the form

H =
1

2
(Πa

j )
2 +

1

4
[(Aa

jA
a
j )

2 −Aa
jA

a
kA

b
jA

b
k] +

iǫabc

2
[ψ̄aψ̄bAc

+ + ψaψbAc
−] (4.3)

Note, however, that the supercharges written in (4.1) are not nilpotent. One easily derives

Q2 = Aa
−Ĝ

a, where

Ĝa = ǫabc(Ab
jΠ

c
j − iψbψ̄c) (4.4)

are Gauss law constraints — generators of gauge transformations. If we want to keep

supersymmetry, one should perform the Hamiltonian reduction and impose the constraint

ĜaΨ = 0.

One can now resolve the constraints, i.e. get rid of three variables on which noth-

ing depends (gauge degrees of freedom) and to write the Hamiltonian in reduced phase

space. For field theories, this is practically impossible, but, for quantum mechanical sys-

tems, it is quite feasible. It is convenient to use the polar representation for the vector

potential [49, 50]. In the (2+1)-dimensional case, it boils down to

A a
j = UjkΛ

b
k Vba , (4.5)

where Ujk(α) is an O(2) matrix describing spatial rotations, Vba(φ
a) is an O(3) gauge

rotation matrix and Λ b
k is a quasidiagonal matrix,

Λ b
k =

(

a 0 0

0 b 0

)

. (4.6)
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Choosing the gauge Vba = δba, we are left with just three gauge invariant bosonic vari-

ables: a, b, α. In addition, reduced phase space inherits all three complex fermion variables

ψa, ψ̄a. The explicit expressions for the reduced supercharges and Hamiltonian are rather

complicated [51]. We will present here only the supercharges.

Qcov = e−iαg0

[

ψ1

(

pa − i
apα + bJ3

a2 − b2

)

+ ψ2

(

−ipb +
bpα + aJ3

a2 − b2

)

−ψ3

(

J2

a
+
iJ1

b

)]

+
iab

g0
ψ̄3 ,

Q̄cov = g0e
iα

[

ψ̄1

(

pa + i
apα + bJ3

a2 − b2

)

+ ψ̄2

(

ipb +
bpα + aJ3

a2 − b2

)

− ψ̄3

(

J2

a
− iJ1

b

)]

− iab

g0
ψ3 , (4.7)

where Ja = iǫabcψbψ̄c.

This is a kind of sigma model, the metric in the space {a, b, α} induced by the flat

metric in the space {Aa
j} being nontrivial. The configuration space involves a complex

fermion variable for each bosonic variable, i.e. the number of degrees of freedom is the

same as for the de Rham complex. But it is not a de Rham system: for the latter the

fermion charge is conserved, while the supercharge Q in (4.7) involves the terms ∝ ψ̄ on

top of the terms ∝ ψ.

If our conjecture is true, the supercharges (4.7) can be obtained by a similarity trans-

formation and Hamiltonian reduction from a free system. However, in this case, a pure

similarity transformation of the system (2.14) of real dimension 3 would probably be not

sufficient. Indeed, the only imaginable to us way to obtain the term ∝ ψ̄3 out of a ”flat” su-

percharge like paψ
(a)+pbψ

(b)+pαψ
(α) is applying an antiholomorphic transformation (2.23).

But such a transformation can generate only the terms ∼ ψ̄ that multiply canonical mo-

menta and in addition the unwanted terms ∝ ψψ̄ψ̄.

Thus, to derive (4.7), one should start from a free system of larger dimension. Indeed,

as was discussed above, the system (4.7) can be obtained by a Hamiltonian reduction of a

more simply looking system (4.1), (4.3) with extended phase space. But, in constrast to

the examples with Hamiltonian reduction discussed in the previous section, such extended

system is not supersymmetric — this is the distinction that we were talking about. The

absence of supersymmetry in the large system can be traced back to the fact that, when

writing (4.1), (4.3), we have already partially fixed the gauge (Wess-Zumino gauge) and

got rid of some number of components in the spinor superfield Γα describing 3D SYM

theory. Supersymmetry is broken by such partial gauge fixing and is restored when the

gauge is fixed completely. The question is thus reduced to the question whether this large

SQM system involving all components of Γα can be obtained by our recipe. We hope to

address it in later studies.

The same set of question can be asked to a system obtained by the dimensional reduc-

tion of (3+1)-dimensional, (5+1)-dimensional, or (9+1)-dimensional SYM theory with or

without extra matter multiplets. For example, pure (3+1) SYM theory involves 3·3−3 = 6
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gauge invariant variables. The explicit expressions for its reduced supercharges and Hamil-

tonian are given in ref. [16].

5 Field theories

A natural question to ask is whether our conjecture formulated for SQM systems works

also for field theories.

The fast answer that it should, because quantum field theory is nothing but a SQM

system with an infinite number of degrees of freedom. The devil is, as usual, in the details.

Consider the simplest example — the 4D Wess-Zumino model. To make the things

still simpler, let it be free massless WZ model with the Lagrangian

L =

∫

dx
[

∂µφ̄∂µφ+ iψσµ∂µψ̄
]

(5.1)

where ψα, ψ̄α̇ are complex conjugate Minkowskian Weyl spinors and (σµ)αβ̇ = (1, σj)αβ̇ .
12

The corresponding Hamiltonian

H =

∫

dx
[

Π̄Π + ∂jφ̄∂jφ− iψσj∂jψ̄
]

(5.2)

is supersymmetric. There is the Weyl doublet of supercharges,

Qα =
√
2

∫

dx
[

Πψα + ∂jφ̄ (σj)αγ̇δ
γ̇γψγ

]

,

Q̄α̇ =
√
2

∫

dx
[

Π̄ψ̄α̇ + (∂jφ)ψ̄γ̇δ
γ̇γ(σj)γα̇

]

(5.3)

They satisfy the algebra

{Qα, Q̄α̇} = 2(σµ)αα̇Pµ = 2 [δαα̇H + (σj)αα̇Pj ] , (5.4)

where P is the 3-momentum operator.

Put the system in a finite box of size L, which we set to 1, and expand φ(x), ψ(x) in

the Fourier series,

φ(x) =
∑

n

φne
2πinx, ψ(x) =

∑

n

ψne
2πinx

φ̄(x) =
∑

n

φ̄ne
−2πinx, ψ̄(x) =

∑

n

ψ̄ne
−2πinx (5.5)

The Hamiltonian (5.2) is expressed via the modes as follows,

H =
∑

n

[

Π̄nΠn + (2πn)2 φ̄nφn − 2πnjψnσjψ̄n

]

(5.6)

12Our conventions are almost the same as in ref. [35], but the metric is chosen with the opposite sign,

ηµν = diag(1,−1,−1,−1).
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(Πn = ˙̄φn) and the supercharges are

Qα =
√
2
∑

n

[

Πnψαn − 2πinj (σj)αβψβnφ̄n
]

,

Q̄α =
√
2
∑

n

[

Π̄nψ̄αn + 2πinj ψ̄βn(σj)βαφn
]

(5.7)

(The finite box breaks Lorentz invariance and there is no point to distinguish the usual

and dotted indices anymore).

This is an SQM model with an infinite number of degrees of freedom, indeed. One can

observe, however, that from the SQM viewpoint,

• it is not a basic system (3.2) as, besides the terms ∝ Πψ, the supercharges involve

extra terms.

• the supercharges (5.7) satisfy not the standard N = 4 superalgebra, but the alge-

bra (5.4) involving the 3-momentum playing the role of a central charge.

Furthermore, the supercharges (5.7) do not seem to be related to the basic supercharges
∑

n
Πnψαn,

∑

n
Π̄nψ̄αn by a similarity transformation.

It is still possible to write down a similarity transformation of the de Rham free (in

the SQM sense) supercharge Q = pAψA such that the anticommutator of the transformed

supercharge Q and its conjugate would give (5.6).

Consider one particular termHn in the sum (5.6). Let first n 6= 0. One can observe that

the matrix njσj has two eigenvalues λ1,2 = ±
√
n2. If denoting by χ1,2

n the corresponding

normalized eigenvectors, one can represent

njψnσjψ̄n =
√
n2(χ1

n
χ̄1
n
− χ2

n
χ̄2
n
) (5.8)

Then one can define

Qn = χ1
n

(

P 1
n
+ 2iπf1

n

√
n2
)

+ χ2
n

(

P 2
n
− 2iπf2

n

√
n2
)

(5.9)

(P 1,2
n /

√
2 and f1,2n /

√
2 being the real and imaginary parts of Πn and φn). The operator (5.9)

is nilpotent and

{Qn, Q̄n} = 2Hn . (5.10)

This holds also in the case of degenerate eigenvalues, n = 0, if choosing for χ1,2
n arbitrary

orthonormal vectors.

Obviously, the full supercharge

Q =
∑

n

Qn (5.11)

is also nilpotent, and {Q, Q̄}/2 gives the Hamiltonian (5.6). In fact, this model repre-

sents a multidimensional (with an infinity of degrees of freedom) generalization of the

model (1.1), (1.2) with the superpotential

W =
∑

n

π
√
n2
[

(f1
n
)2 − (f2

n
)2
]

(5.12)
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Hence, the supercharge (5.11) can be related to the ”free” supercharge

Q(0) =
∑

n

(

P 1
n
χ1
n
+ P 2

n
χ2
n

)

(5.13)

by the similarity transformation (1.6).

Thus, we showed that, when expanded over the modes, the field theory (5.1) can be

obtained by a similarity transformation from the ”free” supercharge (5.13), as it should

according to our conjecture.

The problem, however, is that this transformation and both the supercharges (5.13)

and (5.9) are highly nonlocal. None of them does have therefore a lot of physical sense.

It might be more reasonable to treat the Lorentz-invariant model (5.1) as the free one

and ask whether the supercharges of the interacting WZ model could be obtained from the

free supercharges (5.3) by a similarity transformation. Unfortunately, the answer to this

question seems to be negative.

Indeed, the interacting WZ supercharges are obtained from the free supercharges (5.3)

by adding the following extra terms,

Qint
α = Qfree

α + i
√
2

∫

dxW ′(φ̄)δαα̇ψ̄
α̇ ,

Q̄int
α̇ = Q̄free

α̇ − i
√
2

∫

dxW ′(φ)δα̇αψ
α , (5.14)

where W(φ) is the WZ superpotential (having nothing to do with (5.12)). And we do not

see how to obtain Qint
α out of Qfree

α by a similarity transformation. The problem is the same

as with the supercharge Qcov in eq. (4.7). The only known to us way to generate the term

∝ ψ̄ in the supercharge Q is to apply an antiholomorphic transformation, like in (2.23).

But such a transformation would produce the terms where ψ̄ is multiplied by Π or else the

terms ∝ ψ̄ψ̄ψ. . .

6 Discussion and outlook

Our main point is the

Conjecture. Any SQM model can be related to a free complex model (1.5) by a combination

of two operations: (i) similarity transformation of properly chosen complex supercharges

and (ii) Hamiltonian reduction.

We have not proven it, but checked in many nontrivial examples. In particular, we

discussed nontrivial sigma models with extended supersymmetries and showed that, for the

Kähler de Rham sigma models, hyper-Kähler de Rham sigma models, and HKT models,

all complex supercharges are derived from the free supercharges by the same similarity

transformation.

On the other hand, we have not seen yet that this conjecture also works for gauge

SQM models. We noted that this question can be clarified if analyzing the supercharges

and the Hamiltonian of gauge models before gauge is fixed such that supersymmetry is

realized linearly.
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In section 5, we discussed field theories and found out that, though our recipe seems to

work (it works in the simplest case that we analyzed), the similarity transformation turns

out to be highly nonlocal and therefore useless.

The last remark is the following. Philosophically, similarity transformations considered

in this paper remind the Nicolai map [52]. In both cases, an interacting model is related

to a free one. However, the ways they are related are rather different. The Nicolai map

is a nonlocal transformation of bosonic variables that renders the functional integral for

the index Gaussian allowing one to do it. For the simplest nontrivial SQM model (1.2), it

amounts to the change

ẋ±W ′(x) → ẏ (6.1)

It is not similar to the local transformation of the supercharges studied in this paper,

though more meditations in this direction are definitely welcome.

I am indebted to S. Fedoruk and E. Ivanov for many illuminating discussions.

A Kähler and hyper-Kähler superalgebras

We will prove here some well-known to mathematicians facts [24] in the SQM language

understandable to physicists.

We will be interested in extra supersymmetries of the de Rham ({1,2,1}) sigma models

that come into existence when the manifold is Kähler. We are using the method that was

used earlier to study extra supersymmetries for the Dolbeault ({2,2,0})) models for hyper-

Kähler [21] and HKT [22] manifolds.

We start with reminding

One of the possible definitions. The complex manifold is called Kähler if its complex

structure tensor,13

IMN = −INM , I P
M I N

P = −δ N
M (A.1)

is covariantly constant,

DP IMN = ∂P IMN − ΓS
PMISN − ΓS

PNIMS = 0 . (A.2)

Similarly: the manifold is called hyper-Kähler if it admits three different covariantly

constant complex structures Ia satisfying the quaternionic algebra (3.9).

We will prove now two theorems.

Theorem 1. If the manifold is Kähler, the supercharges (2.16), (3.7) and their conjugates

satisfy the N = 4 superalgebra with the only nonvanishing anticommutators

{Q, Q̄} = {S, S̄} . (A.3)

13For the manifold to be genuinely complex and not just almost complex, the tensor IMN should satisfy

besides (A.1) also a certain integrability condition. But if the tensor I is covariantly constant, this condition

is satisfied automatically.
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Proof. (i) Nilpotency of Q,S and the property {Q,S} = 0 follow from the proven above

fact that Q and S are obtained by the same similarity transformation of the corre-

ponding flat supercharges and the validity of the N = 4 superalgebra for the latter.

(ii) To deal with the commutators like {Q, S̄}, introduce the operators

F+ =
1

2
IMN ψ̄

M ψ̄N , F− =
1

2
IMNψ

MψN . (A.4)

Their commutator gives the fermion charge operator, F0 = ψM ψ̄
M . The operators

{F−, F0, F+} form an SU(2) triplet.

(iii) Consider now the commutator [Q,F+]. Capitalizing on the scalar nature of F+, one

can upgrade the ordinary derivatives in the combination ∂M + ΩM,ABψAψ̄B to the

covariant ones, ∂M → DM . The supercharge (2.16) acquires then the form −iψM∇M ,

where ∇M is the full covariant derivative involving also the fermion (spinor) part.

Then one notes that

∇M ψ̄
N = (DMe

N
A )ψ̄A − ΩM,BAe

N
B ψ̄A = 0

and uses the condition (A.2) that the manifold is Kähler to derive

[Q,F+] = iψ̄QI M
Q ∇M = −S̄ , [Q̄, F−] = −S ,

[S, F+] = Q̄, [S̄, F−] = Q (A.5)

(the commutators [Q,F−] and [Q̄, F+] vanish). The vanishing of {Q, S̄}={Q, [F+, Q]}
follows from nilpotency of Q and the Jacobi identity.

(iv) The anticommutator {S, S̄} = {S, [F+, Q]} is reduced to the anticommutator

{[S, F+], Q} = {Q̄,Q} by the Jacobi identity.

Theorem 2. If the manifold is hyper-Kähler, the supercharges (2.16), (3.11) and their

conjugates satisfy the N = 8 superalgebra with the only nonvanishing anticommutators

{Q, Q̄} = {S1, S̄1} = {S2, S̄2} = {S3, S̄3} . (A.6)

Proof. (i) Bearing in mind the results of the previous theorem, we have only to prove

that {Sa, Sb} = 0 and {Sa, S̄b} = 0 when a 6= b. The first equality follows from the

fact that all Sa are obtained from the flat holomorphic supercharges in (3.8) by one

and the same similarity transformation.

(ii) To calculate {Sa, S̄b}, introduce the operators

F a
+ =

1

2
IaMN ψ̄

M ψ̄N , F a
− =

1

2
IaMNψ

MψN . (A.7)

The same reasoning as above and the quaternionic algebra (3.9) allow one to derive

[Sa, F b
+] = δabQ̄− ǫabcS̄c, [S̄a, F b

−] = δabQ− ǫabcSc (A.8)

and [Sa, F b
−] = [S̄a, F b

+] = 0. Then e.g. {S1, S̄2} = {S1, [S1, F 3
+]}, which vanishes due

to nilpotency of S1 and the Jacobi identity.

– 19 –
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