17 research outputs found
Recommended from our members
A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation
While cumulative carbon dioxide (CO2) emissions dominate anthropogenic warming over centuries, temperatures over the coming decades are also strongly affected by short-lived climate pollutants (SLCPs), complicating the estimation of cumulative emission budgets for ambitious mitigation goals. Using conventional Global Warming Potentials (GWPs) to convert SLCPs to “CO2-equivalent” emissions misrepresents their impact on global temperature. Here we show that peak warming under a range of mitigation scenarios is determined by a linear combination of cumulative CO2 emissions to the time of peak warming and non-CO2 radiative forcing immediately prior to that time. This may be understood by expressing aggregate non-CO2 forcing as cumulative
CO2 forcing-equivalent (CO2-fe) emissions. We show further that contributions to CO2-fe emissions are well approximated by a new usage of GWP, denoted GWP*, which relates cumulative CO2 emissions to date with the current rate of emission of SLCPs. GWP* accurately indicates the impact of emissions of both long-lived and short-lived pollutants on radiative forcing and temperatures over a wide range of timescales, including under ambitious mitigation when conventional GWPs fail. Measured by GWP*,implementing the Paris Agreement would reduce the expected rate of warming in 2030 by 28% relative to a No Policy scenario. Expressing mitigation efforts in terms of their impact on future cumulative emissions aggregated using GWP* would relate them directly to contributions to future warming, better informing both burden-sharing discussions and long-term policies and measures in pursuit of ambitious global temperature goals
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L
The Cockcroft-Gault formula is often used to calculate the glomerular filtration rate (GFR) from plasma creatinine results. In Sweden this calculation is not usually done in the laboratory, but locally in the wards. These manual calculations could cause erroneous results. In several studies plasma cystatin C has been shown to be superior to plasma creatinine for estimation of GFR. One limitation of using cystatin C as a GFR marker is that there is no conversion formula transforming cystatin C expressed as mg/L to GFR expressed as mL/min. In this study plasma creatinine and cystatin C were compared with iohexol clearance. A stronger correlation (p<0.0001) was found between cystatin C and iohexol clearance (r(2) =0.91) than between creatinine and iohexol clearance (r(2) =0.84). From the correlation data a formula was calculated to convert cystatin C expressed as mg/L to GFR (mL/min). The formulas y=77.24x -1.2623 (Dade Behring cystatin C calibration) or y=99.43x -1.5837 (DakoCytomation cystatin C calibration) are used to calculate GFR expressed in mL/min from the cystatin C value in mg/L and both results are reported to the referral doctor. These formulas can provide the clinicians with reliable and readily available GFR data based on single measurements of cystatin C concentrations
Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees
The influence of carbon dioxide (CO(2)) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO(2) and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO(2) concentration. A pulse of labelled gases ((13)CO(2) and (15)NH(3)) was administered to these trees as a means to determine the legacy effect of CO(2) level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH(3) than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO(2). However, unlike the (13)CO(2) pulse, assimilation and transport of the (15)NH(3) pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history