31 research outputs found

    The stress-responsive Hsp90 chaperone is required for the production of the genotoxin colibactin and the siderophore yersiniabactin by Escherichia coli

    Get PDF
    The genotoxin colibactin synthesized by Escherichia coli is a secondary metabolite belonging to the chemical family of hybrid polyketide/non-ribosomal peptide compounds. It is produced by a complex biosynthetic assembly line encoded by the pks pathogenicity island. The presence of this large cluster of genes in the E. coli genome is invariably associated with the High-Pathogenicity Island, encoding the siderophore yersiniabactin that belongs to the same chemical family as colibactin. The E. coli heat shock protein HtpG (Hsp90Ec) is the bacterial homolog of the eukaryotic molecular chaperone Hsp90 involved in the protection of cellular proteins against a variety of environmental stresses. In contrast to the eukaryotic Hsp90, the functions and client proteins of Hsp90Ec are poorly known. Here, we demonstrated that production of colibactin and yersiniabactin is abolished in the absence of Hsp90Ec We further characterized an interplay between the Hsp90Ec molecular chaperone and the ClpQ protease involved in colibactin and yersiniabactin synthesis. Finally, we demonstrated that Hsp90Ec is required for the full in vivo virulence of extraintestinal pathogenic E. coli This is the first report highlighting the role of heat shock protein Hps90Ec in the production of two secondary metabolites involved in E. coli virulence

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    The semiochemically mediated interactions between bacteria and insects

    Full text link
    In natural environment, semiochemicals are involved in many interactions between the different trophic levels involving insects, plants and hosts for parasitoids or prey for predators. These volatile compounds act as messengers within or between insect species, inducing particular behaviours such as the localisation of a source of food, the orientation to an adequate oviposition site, the selection of a suitable breeding site and the localisation of hosts or prey. In this sense, bacteria have been shown to play an important role in the production of volatile compounds which ones act as semiochemicals. This review, focusing on the semiochemically-mediated interactions between bacteria and insects, highlights that bacterial semiochemicals act as important messengers for insects. Indeed, in most of the studies reported here, insects respond to specific volatiles emitted by specific bacteria hosted by the insect itself (gut, mouthparts, etc.) or present in the natural environment where the insect evolves. Particularly, bacteria from the families Enterobacteriaceae, Pseudomonaceae and Bacillaceae are involved in many interactions with insects. Because semiochemicals naturally produced by bacteria could be a very interesting option for pest management, advances in this field are discussed in the context of biological control against insect pests.Solaphi

    CGH analysis and VHL mutation analysis of sporadic and hereditary hemangioblastomas point to genetic heterogeneity.

    No full text
    Item does not contain fulltextOBJECT: Hemangioblastomas (HBs) occur sporadically or as a manifestation of von Hippel-Lindau (VHL) disease. In the majority of VHL-related HBs, inactivation of the VHL tumor suppressor gene (TSG), which is located on chromosome 3p25-26, is found. The VHL gene is assumed to be involved also in the development of sporadic HBs. In a previous study of chromosomal aberrations of sporadic HBs, multiple chromosomal imbalances were found in the majority of tumors. The aim of this study was to analyze further both sporadic HBs and VHL-related HBs to determine if these histopathologically identical tumors have a different genetic background. METHODS: Sixteen sporadic HBs and seven VHL-related HBs were identified by clinical criteria and analyzed. Comparative genomic hybridization was used to screen for chromosomal imbalances throughout the entire HB genome. Additionally, mutation analysis of the VHL gene was performed using direct sequencing. Loss of chromosome 3 and multiple other chromosomal imbalances were found in the sporadic HBs, although only one imbalance, a loss of chromosome 3, was detected in the seven VHL-related HBs. Somatic VHL gene mutations were found in one third of sporadic HBs, whereas a mutation of the VHL gene was detected in all VHL-related HBs. CONCLUSIONS: These results indicate that the molecular mechanisms underlying sporadic HBs and VHL-related HBs are different. Inactivation of the VHL gene is probably not the most important event in the tumorigenesis of sporadic HBs. Other mechanisms of inhibition of VHL protein function, or inactivation of other TSGs, on chromosome 3p or on other chromosomes, might be important in the development of sporadic HBs
    corecore