9 research outputs found

    Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction

    Get PDF
    Aims: Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). Methods and results: Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca-2(+) reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca-2(+) release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+-wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. Conclusions: In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity

    Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice

    Get PDF
    Purpose: Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Methods: Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Results: Smoking reduced body weight by 26% (P 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Conclusions: Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments

    Interval training improves right ventricular function in a mouse model of cigarette smoke induced-chronic obstructive pulmonary disease

    No full text
    Patients with chronic obstructive pulmonary disease (COPD) have impaired lung function and exercise tolerance reducing their quality of life and increasing mortality.&nbsp;In recent years, there has been a growing consensus that exercise has beneficial effects for COPD patients, even for those with severely impaired pulmonary function. Even though COPD primarily affects the lungs, it has several systemic comorbid conditions including cardiac dysfunction with right sided heart failure, which is an adverse prognostic factor in COPD. While several clinical studies have investigated the relationship between exercise and COPD and found that exercise increases muscular strength and quality of life in these patients, there are limited data regarding the effect of exercise training on their cardiac function. Objective: To study whether interval training would improve cardiac function in a mice model of COPD. Method: 42 mice were randomized into cigarette smoke (CS) exposure or fresh air (FA) group. Following 14 weeks of CS and FA exposure, the two groups were again randomized into exercise training or sedentary group. The training group exercised one hour every day, five times a week for four weeks. Cardiac function was assessed by echocardiography. Results: In the CS exposed animals, delta peak oxygen uptake increased by 9.2% in CS and by 11 % in FA trained animals. Right ventricular (RV) systolic function was depressed by CS. Four weeks of interval training restored the depressed function of RV, while no changes were observed in the left ventricle function. Conclusion: Taken together, results from the present study support the hypothesis that CS decreased RV function and that the adaptations to interval training exercise were accompanied by enhanced systolic and diastolic RV global function. A reduction in vascular remodeling was suggested in the present study as a potential mechanism in which exercise training reduces RV afterload and dysfunction. &nbsp

    Effects of exercise training on pulmonary vessel muscularization and right ventricular function in an animal model of COPD

    No full text
    Background Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD. Methods 42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry. Results Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure. Conclusions RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature

    Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction

    No full text
    Abstract Aims Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate‐intensity continuous training (MICT) or high‐intensity interval training (HIIT). Methods and results Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo‐4, confocal) were compared in ZSF‐1 obese (metabolic syndrome, HFpEF) and ZSF‐1 lean (control) 21‐ and 28‐week‐old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1–5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+] or cytosolic Ca2+ load at basal or increased pacing rate (1–5 Hz). MICT lowered pro‐arrhythmogenic Ca2+ sparks and attenuated Ca2+‐wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. Conclusions In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end‐diastolic volume, and cellular arrhythmogenicity

    Exercise training reveals inflexibility of the diaphragm in an animal model of patients with obesity-driven heart failure with a preserved ejection fraction

    No full text
    Background Respiratory muscle weakness contributes to exercise intolerance in patients with heart failure with a preserved ejection fraction (HFpEF)—a condition characterized by multiple comorbidities with few proven treatments. We aimed, therefore, to provide novel insight into the underlying diaphragmatic alterations that occur in HFpEF by using an obese cardiometabolic rat model and further assessed whether exercise training performed only after the development of overt HFpEF could reverse impairments. Methods and Results Obese ZSF1 rats (n=12) were compared with their lean controls (n=8) at 20 weeks, with 3 additional groups of obese ZSF1 rats compared at 28 weeks following 8 weeks of either sedentary behavior (n=13), high‐intensity interval training (n=11), or moderate‐continuous training (n=11). Obese rats developed an obvious HFpEF phenotype at 20 and 28 weeks. In the diaphragm at 20 weeks, HFpEF induced a shift towards an oxidative phenotype and a fiber hypertrophy paralleled by a lower protein expression in MuRF1 and MuRF2, yet mitochondrial and contractile functional impairments were observed. At 28 weeks, neither the exercise training regimen of high‐intensity interval training or moderate‐continuous training reversed any of the diaphragm alterations induced by HFpEF. Conclusions This study, using a well‐characterized rat model of HFpEF underpinned by multiple comorbidities and exercise intolerance (ie, one that closely resembles the patient phenotype), provides evidence that diaphragm alterations and dysfunction induced in overt HFpEF are not reversed following 8 weeks of aerobic exercise training. As such, whether alternative therapeutic interventions are required to treat respiratory muscle weakness in HFpEF warrants further investigation

    Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction

    Get PDF
    Abstract Aims Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate‐intensity continuous training (MICT) or high‐intensity interval training (HIIT). Methods and results Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo‐4, confocal) were compared in ZSF‐1 obese (metabolic syndrome, HFpEF) and ZSF‐1 lean (control) 21‐ and 28‐week‐old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1–5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+] or cytosolic Ca2+ load at basal or increased pacing rate (1–5 Hz). MICT lowered pro‐arrhythmogenic Ca2+ sparks and attenuated Ca2+‐wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. Conclusions In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end‐diastolic volume, and cellular arrhythmogenicity

    T cell costimulation blockade blunts pressure overload-induced heart failure

    No full text
    Heart failure (HF) is a leading cause of mortality. Inflammation is implicated in HF, yet clinical trials targeting pro-inflammatory cytokines in HF were unsuccessful, possibly due to redundant functions of individual cytokines. Searching for better cardiac inflammation targets, here we link T cells with HF development in a mouse model of pathological cardiac hypertrophy and in human HF patients. T cell costimulation blockade, through FDA-approved rheumatoid arthritis drug abatacept, leads to highly significant delay in progression and decreased severity of cardiac dysfunction in the mouse HF model. The therapeutic effect occurs via inhibition of activation and cardiac infiltration of T cells and macrophages, leading to reduced cardiomyocyte death. Abatacept treatment also induces production of anti-inflammatory cytokine interleukin-10 (IL-10). IL-10-deficient mice are refractive to treatment, while protection could be rescued by transfer of IL 10-sufficient B cells. These results suggest that T cell costimulation blockade might be therapeutically exploited to treat HF

    Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction

    No full text
    Aims: Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca handling and electrophysiology. Methods and results: Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these “exercise-miRNAs” individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the “exercise-miRNAs”, miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca release whereas miR-214-3p and miR-31a-5p prolonged Ca decay. Conclusion: Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca handling and electrophysiology and could be potential treatment targets
    corecore