111 research outputs found

    Autonomic synchrony induced by hyperscanning interoception during interpersonal synchronization tasks

    Get PDF
    According to previous research, people influence each other’s emotional states during social interactions via resonance mechanisms and coordinated autonomic rhythms. However, no previous studies tested if the manipulation of the interoceptive focus (focused attention on the breath for a given time interval) in hyperscanning during synchronized tasks may have an impact on autonomic synchrony. Thus, this study aims to assess the psychophysiological synchrony through autonomic measures recording during dyadic linguistic and motor synchronization tasks performed in two distinct interoceptive conditions: the focus and no focus on the breath condition. 26 participants coupled in 13 dyads were recruited. Individuals’ autonomic measures [electrodermal: skin conductance level and response (SCL, SCR); cardiovascular indices: heart rate (HR) and HR variability (HRV)] was continuously monitored during the experiment and correlational coefficients were computed to analyze dyads physiological synchrony. Inter-subject analysis revealed higher synchrony for HR, HRV, SCL, and SCR values in the focus compared to no focus condition during the motor synchronization task and in general more for motor than linguistic task. Higher synchrony was also found for HR, SCL, and SCR values during focus than no focus condition in linguistic task. Overall, evidence suggests that the manipulation of the interoceptive focus has an impact on the autonomic synchrony during distinct synchronization tasks and for different autonomic measures. Such findings encourage the use of hyperscanning paradigms to assess the effect of breath awareness practices on autonomic synchrony in ecological and real-time conditions involving synchronization

    Bimodal brush-functionalized nanoparticles selective to receptor surface density.

    Get PDF
    Nanoparticles or drug carriers which can selectively bind to cells expressing receptors above a certain threshold surface density are very promising for targeting cells overexpressing specific receptors under pathological conditions. Simulations and theoretical studies have suggested that such selectivity can be enhanced by functionalizing nanoparticles with a bimodal polymer monolayer (BM) containing shorter ligated chains and longer inert protective chains. However, a systematic study of the effect of these parameters under tightly controlled conditions is still missing. Here, we develop well-defined and highly specific platforms mimicking particle-cell interface using surface chemistry to provide a experimental proof of such selectivity. Using surface plasmon resonance and atomic force microscopy, we report the selective adsorption of BM-functionalized nanoparticles, and especially, a significant enhanced selective behavior by using a BM with longer protective chains. Furthermore, a model is also developed to describe the repulsive contribution of the protective brush to nanoparticle adsorption. This model is combined with super-selectivity theory to support experimental findings and shows that the observed selectivity is due to the steric energy barrier which requires a high number of ligand-receptor bonds to allow nanoparticle adsorption. Finally, the results show how the relative length and molar ratio of two chains can be tuned to target a threshold surface density of receptors and thus lay the foundation for the rational design of BM-functionalized nanoparticles for selective targeting

    Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions

    Get PDF
    From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs

    Molecular Phylogeny of the Genus Lolliguncula Steenstrup, 1881 Based on Nuclear and Mitochondrial DNA Sequences Indicates Genetic Isolation of Populations from North and South Atlantic, and the Possible Presence of Further Cryptic Species

    Get PDF
    Squid of the genus Lolliguncula Steenstrup, 1881 are small bodied, coastal species capable of tolerating low salinity. Lolliguncula sp. are found exclusively in the New World, although only one of the four recognized species (Lolliguncula brevis) occurs in the Atlantic Ocean. Preliminary morphological analyses suggest that Lolliguncula brevis populations in the North and South Atlantic may represent distinct species. The principal objective of the present study was to verify the phylogenetic relationships within the genus and test for the presence of possible cryptic species. Both gene and species tree topologies indicated that Lolliguncula brevis specimens from the North and South Atlantic represent distinct phylogenetic clades. In contrast with previous studies, L. panamensis was identified as the basal species of the genus. Our results provide important insights into the phylogenetic relationships among the Lolliguncula specimens analyzed, and confirm the genetic separation of Lolliguncula brevis populations of the North and South Atlantic at the level of sister species

    A Methodological Approach for Implementing an Integrated Multimorbidity Care Model: Results from the Pre-Implementation Stage of Joint Action CHRODIS-PLUS

    Get PDF
    Patients with multimorbidity (defined as the co-occurrence of multiple chronic diseases) frequently experience fragmented care, which increases the risk of negative outcomes. A recently proposed Integrated Multimorbidity Care Model aims to overcome many issues related to fragmented care. In the context of Joint Action CHRODIS-PLUS, an implementation methodology was developed for the care model, which is being piloted in five sites. We aim to (1) explain the methodology used to implement the care model and (2) describe how the pilot sites have adapted and applied the proposed methodology. The model is being implemented in Spain (Andalusia and Aragon), Lithuania (Vilnius and Kaunas), and Italy (Rome). Local implementation working groups at each site adapted the model to local needs, goals, and resources using the same methodological steps: (1) Scope analysis; (2) situation analysis-"strengths, weaknesses, opportunities, threats" (SWOT) analysis; (3) development and improvement of implementation methodology; and (4) final development of an action plan. This common implementation strategy shows how care models can be adapted according to local and regional specificities. Analysis of the common key outcome indicators at the post-implementation phase will help to demonstrate the clinical effectiveness, as well as highlight any difficulties in adapting a common Integrated Multimorbidity Care Model in different countries and clinical settings

    Applying the FAIR4Health Solution to Identify Multimorbidity Patterns and Their Association with Mortality through a Frequent Pattern Growth Association Algorithm

    Get PDF
    This article belongs to the Special Issue Addressing the Growing Burden of Chronic Diseases and Multimorbidity: Characterization and InterventionsThe current availability of electronic health records represents an excellent research opportunity on multimorbidity, one of the most relevant public health problems nowadays. However, it also poses a methodological challenge due to the current lack of tools to access, harmonize and reuse research datasets. In FAIR4Health, a European Horizon 2020 project, a workflow to implement the FAIR (findability, accessibility, interoperability and reusability) principles on health datasets was developed, as well as two tools aimed at facilitating the transformation of raw datasets into FAIR ones and the preservation of data privacy. As part of this project, we conducted a multicentric retrospective observational study to apply the aforementioned FAIR implementation workflow and tools to five European health datasets for research on multimorbidity. We applied a federated frequent pattern growth association algorithm to identify the most frequent combinations of chronic diseases and their association with mortality risk. We identified several multimorbidity patterns clinically plausible and consistent with the bibliography, some of which were strongly associated with mortality. Our results show the usefulness of the solution developed in FAIR4Health to overcome the difficulties in data management and highlight the importance of implementing a FAIR data policy to accelerate responsible health research.This study was performed in the framework of FAIR4Health, a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 824666. Also, this research has been co-supported by the Carlos III National Institute of Health, through the IMPaCT Data project (code IMP/00019), and through the Platform for Dynamization and Innovation of the Spanish National Health System industrial capacities and their effective transfer to the productive sector (code PT20/00088), both co-funded by European Regional Development Fund (FEDER) ‘A way of making Europe’, and by REDISSEC (RD16/0001/0005) and RICAPPS (RD21/0016/0019) from Carlos III National Institute of Health. This work was also supported by Instituto de Investigación Sanitaria Aragón and Carlos III National Institute of Health [Río Hortega Program, grant number CM19/00164].Peer reviewe

    Re-entrant DNA gels

    Get PDF
    DNA is acquiring a primary role in material development, self-assembling by design into complex supramolecular aggregates, the building block of a new-materials world. Using DNA nanoconstructs to translate sophisticated theoretical intuitions into experimental realizations by closely matching idealized models of colloidal particles is a much less explored avenue. Here we experimentally show that an appropriate selection of competing interactions enciphered in multiple DNA sequences results into the successful design of a one-pot DNA hydrogel that melts both on heating and on cooling. The relaxation time, measured by light scattering, slows down dramatically in a limited window of temperatures. The phase diagram displays a peculiar re-entrant shape, the hallmark of the competition between different bonding patterns. Our study shows that it is possible to rationally design biocompatible bulk materials with unconventional phase diagrams and tuneable properties by encoding into DNA sequences both the particle shape and the physics of the collective response

    FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster Health Research

    Get PDF
    Due to the nature of health data, its sharing and reuse for research are limited by ethical, legal and technical barriers. The FAIR4Health project facilitated and promoted the application of FAIR principles in health research data, derived from the publicly funded health research initiatives to make them Findable, Accessible, Interoperable, and Reusable (FAIR). To confirm the feasibility of the FAIR4Health solution, we performed two pathfinder case studies to carry out federated machine learning algorithms on FAIRified datasets from five health research organizations. The case studies demonstrated the potential impact of the developed FAIR4Health solution on health outcomes and social care research. Finally, we promoted the FAIRified data to share and reuse in the European Union Health Research community, defining an effective EU-wide strategy for the use of FAIR principles in health research and preparing the ground for a roadmap for health research institutions. This scientific report presents a general overview of the FAIR4Health solution: from the FAIRification workflow design to translate raw data/metadata to FAIR data/metadata in the health research domain to the FAIR4Health demonstrators' performance.This research was financially supported by the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 824666 (project FAIR4Health). Also, this research has been co-supported by the Carlos III National Institute of Health, through the IMPaCT Data project (code IMP/00019), and through the Platform for Dynamization and Innovation of the Spanish National Health System industrial capacities and their effective transfer to the productive sector (code PT20/00088), both co-funded by European Regional Development Fund (FEDER) ‘A way of making Europe’.Peer reviewe
    corecore