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Abstract

Squid of the genus Lolliguncula Steenstrup, 1881 are small bodied, coastal species capable of tolerating low salinity.
Lolliguncula sp. are found exclusively in the New World, although only one of the four recognized species (Lolliguncula
brevis) occurs in the Atlantic Ocean. Preliminary morphological analyses suggest that Lolliguncula brevis populations in the
North and South Atlantic may represent distinct species. The principal objective of the present study was to verify the
phylogenetic relationships within the genus and test for the presence of possible cryptic species. Both gene and species
tree topologies indicated that Lolliguncula brevis specimens from the North and South Atlantic represent distinct
phylogenetic clades. In contrast with previous studies, L. panamensis was identified as the basal species of the genus. Our
results provide important insights into the phylogenetic relationships among the Lolliguncula specimens analyzed, and
confirm the genetic separation of Lolliguncula brevis populations of the North and South Atlantic at the level of sister
species.
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Introduction

The genus Lolliguncula, Steenstrup, 1881 was derived from the

separation of Lolliguncula brevis, Blainville, 1823 from the genus

Loligo [1]. The squids of the genus Lolliguncula are small in size and

occur in warm, shallow coastal waters, and are the only

cephalopods found in brackish water [2]. In the 1980s and

1990s, a number of taxonomic advances were made, including the

description of a number of new species [3,4], and the reclassifi-

cation of Lolliguncula mercatoris Adam, 1941, the only member of the

genus not distributed in the western hemisphere, to a new genus

Afrololigo Brackoniecki, 1986. Afrololigo was initially defined on the

basis of the morphology of the hectocotylus, although the

subsequent analysis of DNA sequences [5] validated the separation

of the two genera.

Four Lolliguncula species are recognized at the present time,

representing two subgenera found exclusively in the western

hemisphere – Lolliguncula (Lolliguncula) brevis, Blainville, 1823;

Lolliguncula (Lolliguncula) argus, Brakoniecki & Roper, 1985;

Lolliguncula (Lolliguncula) panamensis Berry, 1911, and Lolliguncula

(Loliolopsis) diomedeae Hoyle, 1904 [6]. Of these species, only

Lolliguncula brevis is found in the Atlantic Ocean, ranging between

Nova Scotia, Canada, in the north Atlantic and southern Brazil in

the south Atlantic. This species is found in relatively shallow

waters, of less than 20 m in depth, and is tolerant of low salinity

[2]. Studies conducted in the 1990s [7] indicated differences in the

morphology and spawning patterns of Lolliguncula brevis populations

in the northern and southern hemispheres, raising doubts with

regard to the taxonomic validity of Lolliguncula brevis, in particular

that specimens from the northern and southern Atlantic may

represent distinct species [8].

Anderson [5] was the first to provide phylogenetic inferences on

the members of the genus Lolliguncula, although this analysis did

not include specimens from South America and was based solely

on mitochondrial genes. The present study aimed to test whether

Lolliguncula brevis is a single species throughout its geographic
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distribution and provides a molecular phylogenetic framework for

systematic analyses of the genus.

Methods

Specimen Collection and the Genes Analyzed
The present study analyzed three of the four recognized

Lolliguncula species. Specimens of Lolliguncula panamensis were

collected from the northeastern Pacific and Lolliguncula brevis from

the South Atlantic. DNA sequences generated from these

specimens were analyzed together with sequences available in

GenBank for other species of loliginid squid [9,10,11,12] (Table

S1). All samples in this study were collected following national

regulations and laws for collection of scientific specimens in each

country. No ethics committee approval is required for these

organisms in Brazil and Mexico at this time. Capture, transport

and handling of the specimens in Brazil was conducted under

ICMBio license Nu 20261-1. No special permits were obtained for

samples collected in Mexico (L. panamensis) since the Mexican

government does not require licences or authorization for capture,

handling or scientific sampling of Cephalopoda, given that these

species are not at risk of overfishing. They are not a target of

commercial fisheries (Unai Markaida, pers. comm.). However, to

receive these samples in Brazil an import licence for biological

material was required. This was obtained through IBAMA

(Brazilian Institute for the Environment and Natural Resources -

license Nu 12BR009032/DF). Specimens were handled following

literature suggestions summarized in a review for aquaculture of

cephalopods [13] and in a recent work with Cephalopods [5,8].

Samples were obtained (already deceased) either from fishermen

or, when collected alive they were anaesthetized and euthanased

immediately following the 3R’s (replacement, reduction and

refinement) concept and existing knowledge for cephalopods.

Gradual addition of cooler water lowers body temperature,

anaesthetizing the animals [13]. When activity ceases, animals

are frozen as a second step to complete euthanasia (S6.3, page 74,

AVMA Guidelines for the Euthanasia of Animals: 2013 Edition).

In Brazil any ethical considerations for capture, transport and

handling of scientific samples is linked directly into the application

for licenses issued by IBAMA and ICMBio, which were obtained

as previously indicated. Although there are various types of ethics

committees in universities and other institutions, they only refer to

experiments with live animals, for which distinct laws do exist see

http://www.mct.gov.br/upd_blob/0226/226746.pdf).

Table 1. Summary of genetic markers and parameters and total sample number used in analyses.

Marker(s)
Length
(base pairs)

Best-fitting
model (AIC)

Best-fitting
model (BIC)

Samples
included

Primer
Reference/Primer sequence

16S 496 bp TIM1+G TIM1+G 24 [13]

COI 600 bp TIM2+I TIM2+I 24 [14]

Rhodopsin 646 bp TIM2ef+G TrNef 22 a/b

16S+COI+Rhod 1742 bp GTR+G TIM2+G 24 –

a) 59- ARAAAATGAGCCACAGAAAG-39; b) Rev 59- TTSTTGYTGAGCCTGCATCTT-39.
doi:10.1371/journal.pone.0088693.t001

Figure 1. Maximum Likelihood Phylogenetic tree of the genus Lolliguncula. Topology based on the concatened datasets (16S+COI+Rhod).
Bayesian credibility support and Bootstrap values are shown above and in front of the nodes, respectively.
doi:10.1371/journal.pone.0088693.g001
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The specimens collected in the Brazilian state of Pará were

captured during the day, approximately 50 m from the coast,

during the spotted pink shrimp (Penaeus brasiliensis) harvest. The

specimens from the Brazilian state of Paraı́ba were captured with a

bottom drag-net during the early morning using lanterns focused

directly into the water along the edge of the beach. The samples

from the Brazilian state of Bahia were collected using alternative

techniques at the different localities, with the specimens from

Jequié and Praia de Guaiabin being collected close to the beach in

drag-nets at low tide, while those from Caravelas were obtained

from bottom-trawling fishing boats.

Tissue samples were stored in ethanol prior to the extraction of

the DNA, and voucher specimens were preserved in 10% formalin

for morphological analyses. Total genomic DNA was extracted

with the Wizard Genomic DNA Purification Kit (Madison, WI),

followed by the extraction protocol for animal tissue (mouse tail).

Each sample was washed twice in 600 ml of sterile ultra-pure

double distilled water by refrigerated centrifugation at 16,000 rpm

during 2 minutes (Sigma Aldrich, 2K15). The mitochondrial 16S

rDNA and Cytochrome Oxidase subunit I (COI) genes and the

nuclear Rhodopsin gene were chosen due primarily to the fact that

these markers have proven to be adequate for phylogenetic

reconstruction in other loliginid species [9]. The PCRs were run in

a final volume of 25 ml containing a mixture of 0.5 ml of each

primer, 2 ml of MgCl2 (25 mM), 4 ml of the dNTP mixture

(1.25 mM), 5.0 ml of 56buffer (Promega, Madison-WI USA-Tris-

HCl and KCl, pH 8.5), 0.2 ml of Taq polymerase (5 U/ml,

Promega, Madison-WI USA), approximately 100 ng of the total

DNA, with ultra-pure water to complete the final volume. The

amplification of the mitochondrial 16S gene was based on the

following cycling parameters: 2 minutes at 94uC for denaturation,

followed by 30 cycles of 30 seconds at 94uC, 1 minute at 51uC for

annealing, 2 minutes at 72uC for extension, and then 7 minutes at

72uC for final extension. For COI, the cycle was 2 minutes at 94uC
for denaturation, followed by 30 cycles of 1 minute at 94uC, 1

minute at 45.5uC for annealing, 2 minutes at 72uC for extension,

and then 7 minutes at 72uC for final extension. For the rhodopsin

gene, the parameters were 15 minutes at 95uC for denaturation,

followed by 35 cycles of 1 minute at 94uC, 1 minute at 61uC for

annealing, 1 minute and 30 seconds at 68uC for extension, and 7

minutes at 72uC for final extension. For sequencing, the samples

were purified with the ExoSAP-IT enzyme (Amersham Pharmacia

Biotech Inc.). The sequencing reactions were conducted using

reagents from the BigDye kit (Applied Biosystems), and the

samples were then sequenced in an ABI 3500 automatic sequencer

(Applied Biosystems).

Sequence Alignment and Phylogenetic Reconstruction
All sequences were initially aligned using CLUSTALW [14] in

BioEdit version 5.0.6 [15]. The alignments were subsequently

checked visually to correct any possible errors. Maximum

likelihood and Bayesian analyses were conducted using separated

or concatenated datasets. For Bayesian analyses the datasets were

partitioned by gene (16S, COI and Rhod) and by codon (COI and

Rhod).

Maximum likelihood analyses were run for each dataset

individually with an evolutionary model selected by each gene

and with the three genes concatenated with one evolutionary

model chosen for the whole dataset. As an alternative for the

concatenation of the three genes a multi-locus coalescent analysis

for inference of species trees from multilocus data was employed

using *BEAST (Star BEAST) [16]. Bayesian Inference (BI) and

Maximum likelihood analyses were run using MrBayes 3.1.2 [17],

and PhyML v3.0 [18], respectively. jModelTest [19] was used to

select the best evolutionary model for each dataset. Genetic

distances were calculated in PAUP* [20] using uncorrected (‘‘p’’)

distances.

The statistical reliability of the arrangements was attained by

bootstrap analysis (using 1000 replicates) [21] and posterior

probability in likelihood and Bayesian analyses, respectively. In

MrBayes 3.1.2 [14], analyses were based on the Markov chain

Monte Carlo (MCMC) sampling procedure, with four simulta-

neous runs, each consisting of four chains (one cold, three heated),

and a total run length of 10 million generations, using the

Figure 2. Partioned Bayesian Inference Phylogenetic tree of the genus Lolliguncula. Topology based on the concatened datasets (16S+
COI+Rhod).
doi:10.1371/journal.pone.0088693.g002
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parameters of the evolutionary models selected for each partition.

The posteriori Bayesian probabilities were selected by the 60%

consensus rule, with random starting trees and trees sampled every

5000 generations following the removal of the trees that appeared

to have reached a stationary state, in which the burn-in was

verified by the empirical examination of the likelihood values.

For species trees the same parameters were used employing

different tools of the BEAST package [22] such as BEAUti for

building the input file for BEAST; BEAST (in Star BEAST mode)

for generating the a posteriori distribution of sampled trees; Tracer

to evaluate continuous parameter values sampled from the chain;

and TreeAnnotator for ‘‘summarizing the information from the

sample of trees produced by BEAST onto a single ‘‘target’’ tree’’.

Results

Concatenate and Multi Species Tree Analysis
The evolutionary models selected for each analysis are showed

in Table 1. In both ML and Bayesian reconstructions the

phylogenetic separation of Lolliguncula brevis specimens from the

North and South Atlantic is strongly supported, with scores of

91% (ML) and 1 (BI) with Afrololigo mercatoris, and three species of

Loligo genus (L. vulgaris, L. reynaudii, L. forbesi) used as outgroup

(Fig. 1). Lolligincula panamensis appears as the most basal species of

the genus, followed by L. diomedeae, which seems to be the sister

group of the North and South Atlantic clade of Lolliguncula brevis.

However, as was not possible to obtain samples from Lolliguncula

argus, the fourth species of the genus, these assertions should be

considered in the context of the present work.

In the concatenated or species tree analysis practically no

subdivisions inside the clades were observed (Figure 2). The only

suggestion is the grouping of LbrSA668 and LbrSA672 with no

significant support in both likelihood and Bayesian analysis (63%

and 0.94, respectively: not showed) in spite of grouping

significantly (ML = 92%; BI = 1) when just mtDNA genes were

considered. But, as they are just two individuals of the same

locality they do not provide any information on the genetic

structure of the South Atlantic population.

Nucleotide Divergences
Non-corrected nucleotide divergences (P) were estimated for

each dataset (See Table 2 and Fig. 3). At the intra specific level the

average divergence estimated for the Lolliguncula brevis from the

North Atlantic for the mtDNA and nucDNA genes were the

following: 16S = 0.3% (min = 0; max = 1.1%), COI = 0.1%

Table 2. Genetic divergences (P) estimated for two mitochondrial and one nuclear genes in the present work.

16S 2 3 4 5 6 7 8

1 Afrololigo mercatoris

2 Loligo forbesii 0.066

3 Loligo reynaudii 0.068 0.063

4 Loligo vulgaris 0.069 0.063 0.018

5 Lolliguncula diomedeae 0.058 0.083 0.072 0.071

6 Lolliguncula panamensis 0.068 0.074 0.07 0.065 0.055

7 Lolliguncula brevis 0.077 0.099 0.077 0.074 0.051 0.066

8 Lollicungula brevis 0.066 0.096 0.082 0.074 0.042 0.057 0.046

COI 2 3 4 5 6 7 8

1 Afrololigo mercatoris

2 Loligo forbesii 0.13

3 Loligo reynaudii 0.128 0.103

4 Loligo vulgaris 0.128 0.095 0.053

5 Lolliguncula diomedeae 0.162 0.149 0.154 0.157

6 Lolliguncula panamensis 0.189 0.165 0.155 0.158 0.151

7 Lolliguncula brevis 0.162 0.167 0.151 0.155 0.087 0.143

8 Lolliguncula brevis 0.157 0.149 0.144 0.15 0.096 0.144 0.065

Rhod 2 3 4 5 6 7 8

1 Afrololigo mercatoris –

2 Loligo forbesii 0.03 –

3 Loligo reynaudii 0.03 0.023

4 Loligo vulgaris 0.036 0.026 0.009

5

6 Lolliguncula panamensis 0.06 0.06 0.062 0.059 –

7 Lolliguncula brevis 0.068 0.064 0.062 0.062 0.045 –

8 Lolliguncula brevis 0.073 0.068 0.064 0.064 0.053 0.008

7 = South Atlantic Lolliguncula brevis; 8 North Atlantic Lolliguncula brevis.
doi:10.1371/journal.pone.0088693.t002
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(min = 0 max = 0.3%); Rhod = no variation. For Lolliguncula brevis

from the South Atlantic the divergences and range were:

16S = 0.1% (min = 0, max = 0.4%); COI = 0.1% (min = 0,

max = 0.3%), and Rhod = no variation (Fig. 3).

In contrast, the average nucleotide divergence between the

populations of Lolliguncula brevis from North and South Atlantic,

which were presumed to belong to a single species, were the

following: 16S = 4.6% (min = 4.3%, max = 4.9%); COI = 6.5%

(min = 6.3%, max = 6.7%); and Rhod = 0.8% (no intraspecific

variation). These divergence values for the 16S gene are, in some

cases, larger than, or in general similar to, those observed between

congeneric species in the genera Lolliguncula and Loligo. For

example, the divergence between Loligo vulgaris vs. L. reynaudii is

1.8%. (See Fig. 3, Table 2). Furthermore, the divergence between

L. diomedeae vs. populations of Lolliguncula brevis from both the South

and North Atlantic are 4.2% and 5.1%, respectively. Similarly, the

divergence between L. diomedeae and L. panamensis is 5.5%, and the

divergence between South Atlantic Lolliguncula brevis vs. L.

panamensis is 5.7%. These values are approximately the same as

that obtained in comparisons between L. forbesii and L. vulgaris or L.

reynaudii (,6.3%) (Table 2; Fig. 3).

In regard to the COI gene, the average divergence between

Lolliguncula brevis populations from the North and South Atlantic

was 6.5% (min = 6.3%, max = 6.7%). But, when these populations

were compared to L. diomedeae the divergence varied from 8.7% to

9.6%, while the divergence between L. diomedeae and L. panamensis

was 15.1%. On the other hand, the divergence between L. reynaudii

and L. vulgaris was much lower (5.7%) and the divergence between

L. forbesii and L. reynaudii was 9.5% and divergence between L.

forbesii and L. vulgaris was 10.3% (Table 2; Fig. 3).

In relation to the nuclear gene Rhodopsin, the divergence

between populations of Lolliguncula brevis from the North and South

Atlantic was 0.8%, similar to the value observed between Loligo

reynaudii and L. vulgaris (0.9%). But, the divergence values observed

in other comparisons between Loligo species, L. forbesii6L. reynaudii

(2.3%) and L. forbesii6L. vulgaris (2.6%) (Table 2; Fig. 3) were

higher.

Discussion

The results of the present study (the first molecular phylogenetic

analysis to focus specifically on the genus) provide important

insights into the phylogenetic relationships among the different

members of the genus Lolliguncula. It was possible to establish the

phylogenetic position of each species within the genus (except for

Lolliguncula (Lolliguncula) argus, for which no sequences exist, nor are

tissues available), providing an alternative interpretation of their

relationships based on molecular data instead of morphology [1,6].

The first key finding is that the data provides a new taxonomic

viewpoint, with a basal position of L. panamensis (Figs. 1 and 2)

rather than L. diomedeae (previously considered to be a distinct

subgenus). The two species can be distinguished by the morphol-

ogy of the males, and the shape of the fins in the females, as well as

the fact that the two species are rarely captured together despite

having a sympatric distribution [6]. Taxonomic uncertainties in

relation to the subgenera Lolliguncula and Loliolopsis had been raised

in previous studies due to their many shared morphological traits

[4,8], particularly similarities in the hectocotylus [4]. The results of

the present study indicate that L. diomedeae lies within the

Lolliguncula brevis - L. panamensis clade, making the Loliolopsis

subgenus invalid.

The second key finding is the presence of a cryptic species

within the geographic distribution of Lolliguncula brevis, in support

of previous morphological studies [7]. All phylogenetic recon-

structions indicated the genetic separation of Lolliguncula brevis from

the North and South Atlantic, with significant statistical support

and a sequence divergence of 4.6 and 6.5% for mtDNA (16S,

COI) and 0.8% for nucDNA (rhodopsin), indicating that the

specimens from the two hemispheres may represent sister species.

Simone [7] identified variation in morphological features of

Lolliguncula brevis specimens from the two hemispheres: southern

specimens have smaller size, thinner mantle, a cylindrical mantle

rounded towards the posterior extremity but extending no further

than the base of the fins, and white or pale red coloration

compared to a dark brown-reddish or yellow-chestnut coloration

Figure 3. Multilocus species tree of the genus Lolliguncula based in two mitochondrial (16S and COI) and one nuclear genes (Rhod)
obtained in the *BEAST program. Posterior probability values are shown at the nodes.
doi:10.1371/journal.pone.0088693.g003
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in the northern specimens [6], fewer suckers on the hectocotylus

[4], and the presence of suckers on the buccal membrane. The

distinct genetic differentiation of Lolliguncula brevis from the

northern and southern Atlantic indicates a breakdown of gene

flow, suggesting the presence of a physical barrier to dispersal

between the hemispheres as observed in other loliginids [12]. In

loliginid squid, genetic connectivity among populations may be

influenced directly by either dispersal capacity of the planktonic

larvae and/or mobility of the adults [6]. In comparison with other

loliginids, Lolliguncula brevis has relatively large eggs and paralarvae,

possibly indicating reduced dispersal [8]. Breakdown of wide-

spread gene flow in Lolliguncula brevis may also be indicated from

the identification of a number of local morphotypes by Zaleski [8],

which may be related to reduced dispersal between inlets and

estuaries in which populations of the species may become

reproductively isolated along the southwest Atlantic coastline.

Conclusions

The gene and species trees topologies generated in the present

study support the classification of L. panamensis, rather than L.

diomedeae, as the most basal species of the genus Lolliguncula, in

context of the present work, contrasting, however with the findings

of previous morphological studies [1]. The phylogenetic analyses

of two mtDNA genes and one nucDNA gene also supported

genetic separation of Lolliguncula brevis from the North and South

Atlantic, with the two groups being identified as sister species. The

divergence values observed between North and South Atlantic

Lolliguncula brevis are of the same magnitude than the divergence

values observed between other congeneric species. So, the genetic

data is in perfect agreement to the proposal of Zaleski and

colleagues [8] for the occurrence of distinct morphotypes within

the range of Lolliguncula brevis. In this case, as the type locality of the

species is Rio de Janeiro [23], Lolliguncula brevis would be the

species name valid for the population from the South Atlantic.

However, as proposed by Zaleski and colleagues [8], a major

redescription of North and South Atlantic forms will be

indispensable for the validation of Lolliguncula brevis from the

South Atlantic, and for revalidation of Lolliguncula brevis from the

North Atlantic, where there are at least four synonyms [1].
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