24 research outputs found

    Palaeoproterozoic adakite- and TTG-like magmatism in the Svecofennian orogen, SW Finland

    Get PDF
    The Palaeoproterozoic Svecofennian orogen in the Fennoscandian shield is an arc accretionary orogen that was formed at c. 1.92-1.86Ga. Arc accretion, magmatism and the subsequent continent-continent collision thickened the crust up to c. 70km, forming one of the thickest Palaeoproterozic orogens. At the end stage of accretionary tectonics, voluminous synorogenic magmatism occurred in southwestern Finland leading to the intrusion of intermediate to felsic plutonic rocks. Ion microprobe single zircon dating of one diorite sample yielded an age of 1872±3Ma (ΔNd=+2.2) and the trondhjemite sample an age of 1867±4Ma (ΔNd=+2.6). Inherited 2667-1965Ma cores and 1842±5Ma metamorphic rims were also found in zircons from the trondhjemite. The dioritic magmatism is mantle-derived and is slightly enriched by subduction-related processes. The felsic magmatism shows elevated Sr/Y and La/Yb ratios, which are typical for adakite- and TTG-like magmas. Their low Mg#, Ni and Cr contents argue against slab-melting and mantle-wedge contamination. We infer that the felsic magmatism was generated through crustal melting of the lower part of the previously generated volcanic-arc type crust. Based on published melting experiments and the Sr and Y contents of the felsic rocks we suggest that the melts were generated at a minimum pressure of 10kbar, with evidence of a 15kbar pressure for the highest Sr/Y trondhjemites. It is proposed that arc accretion combined with magmatic intrusions thickened the crust so that melting of the lower crust yielded adakite- and TTG-like compositions. The mafic magmatism is considered to be the heat source

    Hybridization of granitic magmas in the source: The origin of the Karakoram Batholith, Ladakh, NW India

    No full text
    Many magmatic bodies have a hybrid isotopic signature suggesting that somewhere during genesis, transport and emplacement, magmas assimilated other rocks or mixed with other magmas. Where and how hybridization takes place is seldom documented. Here, we investigate a magmatic system in the Eastern Karakoram, Ladakh, NW India, comprising an anatectic zone, and a network of sheets, stocks and plutons exposed in the Pangong Metamorphic Complex within the Karakoram Shear Zone, as well as the Karakoram Batholith. These granitic rocks have an isotopic signature indicative of a mixture between mantle and crustal sources. In the anatectic region, calc-alkaline granitoids and their meta-sedimentary country rocks underwent water-fluxed partial melting at upper amphibolite facies between 20 and 14Ma ago. Anatexis gave rise to leucosomes and intrusive rocks that have a range in composition from leucotonalite to leucogranite. Those related to the partial melting of calc-alkaline rocks contain hornblende, whereas those related to Bt-psammites contain two micas±garnet. Leucosomes rooting in different source rocks merge with each other and homogenize as they link up to form a hierarchy of magma channels, feeding into stocks, plutons and ultimately into the Karakoram Batholith. This interpretation is supported by Sr and Nd isotopes. Initial 87Sr/86Sr and ΔNd values are distinct for each of the magma protoliths in the anatectic zone and for the magmatic products. Calc-alkaline granitoids have initial 87Sr/86Sr=0.7042 to 0.7077 and ΔNd=+0.6 to +2.4, indicative of a slightly depleted mantle source region. This is in contrast to the meta-sedimentary rocks that yield initial 87Sr/86Sr=0.7115 to 0.7161 and ΔNd=-10.0 to -9.6, suggesting a stronger crustal component. Leucogranitic rocks, including a variety of leucosomes in the anatectic zone and samples from the Karakoram Batholith, yield intermediate values of initial 87Sr/86Sr=0.7076 to 0.7121 and ΔNd=-3.6 to -7.1 that can be modelled by mixing of the two source rocks. The hybrid signature of leucosomes and their similarity to intrusive leucogranites indicate that magma hybridization must have taken place within the source region as a result of the confluence of magmas to form the escape channels. We conclude that the voluminous leucogranites of the Miocene Karakoram Batholith result from water-fluxed intracrustal melting of sources with crustal and mantle signatures, and that mixing occurred within the source

    Palaeoproterozoic adakite- and TTG-like magmatism in the Svecofennian orogen, SW Finland

    No full text
    The Palaeoproterozoic Svecofennian orogen in the Fennoscandian shield is an arc accretionary orogen that was formed at c. 1.92-1.86Ga. Arc accretion, magmatism and the subsequent continent-continent collision thickened the crust up to c. 70km, forming one of the thickest Palaeoproterozic orogens. At the end stage of accretionary tectonics, voluminous synorogenic magmatism occurred in southwestern Finland leading to the intrusion of intermediate to felsic plutonic rocks. Ion microprobe single zircon dating of one diorite sample yielded an age of 1872±3Ma (eNd=+2.2) and the trondhjemite sample an age of 1867±4Ma (eNd=+2.6). Inherited 2667-1965Ma cores and 1842±5Ma metamorphic rims were also found in zircons from the trondhjemite. The dioritic magmatism is mantle-derived and is slightly enriched by subduction-related processes. The felsic magmatism shows elevated Sr/Y and La/Yb ratios, which are typical for adakite- and TTG-like magmas. Their low Mg#, Ni and Cr contents argue against slab-melting and mantle-wedge contamination. We infer that the felsic magmatism was generated through crustal melting of the lower part of the previously generated volcanic-arc type crust. Based on published melting experiments and the Sr and Y contents of the felsic rocks we suggest that the melts were generated at a minimum pressure of 10kbar, with evidence of a 15kbar pressure for the highest Sr/Y trondhjemites. It is proposed that arc accretion combined with magmatic intrusions thickened the crust so that melting of the lower crust yielded adakite- and TTG-like compositions. The mafic magmatism is considered to be the heat source

    Palaeoproterozoic adakite- and TTG-like magmatism in the Svecofennian orogen, SW Finland

    No full text
    The Palaeoproterozoic Svecofennian orogen in the Fennoscandian shield is an arc accretionary orogen that was formed at c. 1.92-1.86Ga. Arc accretion, magmatism and the subsequent continent-continent collision thickened the crust up to c. 70km, forming one of the thickest Palaeoproterozic orogens. At the end stage of accretionary tectonics, voluminous synorogenic magmatism occurred in southwestern Finland leading to the intrusion of intermediate to felsic plutonic rocks. Ion microprobe single zircon dating of one diorite sample yielded an age of 1872±3Ma (eNd=+2.2) and the trondhjemite sample an age of 1867±4Ma (eNd=+2.6). Inherited 2667-1965Ma cores and 1842±5Ma metamorphic rims were also found in zircons from the trondhjemite. The dioritic magmatism is mantle-derived and is slightly enriched by subduction-related processes. The felsic magmatism shows elevated Sr/Y and La/Yb ratios, which are typical for adakite- and TTG-like magmas. Their low Mg#, Ni and Cr contents argue against slab-melting and mantle-wedge contamination. We infer that the felsic magmatism was generated through crustal melting of the lower part of the previously generated volcanic-arc type crust. Based on published melting experiments and the Sr and Y contents of the felsic rocks we suggest that the melts were generated at a minimum pressure of 10kbar, with evidence of a 15kbar pressure for the highest Sr/Y trondhjemites. It is proposed that arc accretion combined with magmatic intrusions thickened the crust so that melting of the lower crust yielded adakite- and TTG-like compositions. The mafic magmatism is considered to be the heat source

    Palaeoproterozoic adakite- and TTG-like magmatism in the Svecofennian orogen, SW Finland

    No full text
    The Palaeoproterozoic Svecofennian orogen in the Fennoscandian shield is an arc accretionary orogen that was formed at c. 1.92-1.86Ga. Arc accretion, magmatism and the subsequent continent-continent collision thickened the crust up to c. 70km, forming one of the thickest Palaeoproterozic orogens. At the end stage of accretionary tectonics, voluminous synorogenic magmatism occurred in southwestern Finland leading to the intrusion of intermediate to felsic plutonic rocks. Ion microprobe single zircon dating of one diorite sample yielded an age of 1872±3Ma (eNd=+2.2) and the trondhjemite sample an age of 1867±4Ma (eNd=+2.6). Inherited 2667-1965Ma cores and 1842±5Ma metamorphic rims were also found in zircons from the trondhjemite. The dioritic magmatism is mantle-derived and is slightly enriched by subduction-related processes. The felsic magmatism shows elevated Sr/Y and La/Yb ratios, which are typical for adakite- and TTG-like magmas. Their low Mg#, Ni and Cr contents argue against slab-melting and mantle-wedge contamination. We infer that the felsic magmatism was generated through crustal melting of the lower part of the previously generated volcanic-arc type crust. Based on published melting experiments and the Sr and Y contents of the felsic rocks we suggest that the melts were generated at a minimum pressure of 10kbar, with evidence of a 15kbar pressure for the highest Sr/Y trondhjemites. It is proposed that arc accretion combined with magmatic intrusions thickened the crust so that melting of the lower crust yielded adakite- and TTG-like compositions. The mafic magmatism is considered to be the heat source

    Proterozoic crustal evolution in southcentral Fennoscandia

    Get PDF
    The Transscandinavian Igneous Belt (TIB) and the Eastern Segment of the Southwest Scandinavian Domain reflect advanced stages of continental growth within the Fennoscandian Shield. The relationship between the two units is not clear, mainly because N-S trending shear zones of the Protogine Zone transect the border zone. The main goal of this thesis has been to investigate rocks in the border zone and to conclude how these rocks differ from each other. In this work two volcanic sequences and 24 granitoids in the border area, near Jönköping, were examined. The thesis reports geochemical and Sm-Nd isotope data as well as U-Pb ion microprobe zircon dates for extrusive and intrusive rocks in the southwestern part of the TIB and intrusive rocks in the eastern part of the southern Eastern Segment. The TIB rocks are subdivided into TIB-0, TIB-1 and TIB-2 groups based on their ages. In this work, the Habo Volcanic Suite and the MalmbÀck Formation are dated at 1795±13 Ma and 1796±7 Ma respectively, which establishes that they are part of the TIB-1 volcanic rocks. The MalmbÀck Formation is situated in the southwestern part of TIB, east of the Protogine Zone, whereas the Habo Volcanic Suite is located c. 50 km northwest of the MalmbÀck Formation, between shear zones of the Protogine Zone. Both suites comprise mafic to felsic components and the MalmbÀck Formation includes one of the largest mafic volcanic rock units of the TIB-1. The MalmbÀck Formation comprises fairly well preserved volcanic rocks, with primary textures, although mineral parageneses in some rocks suggest metamorphism at up to epidote-amphibolite facies conditions. Amphibolites facies metamorphism and deformation has largely obscured primary textures of the Habo Volcanic Suite. Dating of a Barnarp granite which intrudes the Habo Volcanic Suite gave an age of 1660±9 Ma, corresponding to TIB-2. The occurrences of MalmbÀck Formation megaxenoliths within TIB-1 granitoids are explained by stoping. Geochemical signatures of the two metavolcanic rock suites suggest emplacement in an active continental margin setting. It is further suggested that the TIB regime was complex, similar to what is seen in the Andes today, with different regions characterised by subduction-related magmatism, Andinotype extension as well as local compression. Twenty-one granitoids (including the granite intruding the Habo Volcanic Suite), across and in the border zone between the TIB and the Eastern Segment, were dated by U-Pb zircon ion probe analysis. Eighteen of the granitoids yielded TIB-2 magmatic ages, ranging between 1710 and 1660 Ma. Eighteen granitoids were analyzed for geochemistry and Sm-Nd isotopes. The geochemical and isotopic signatures of the granitoids proved to be similar, supporting the theory that the TIB and the Eastern Segment originated from the same type of source and experienced the same type of emplacement mechanisms. Further, it is concluded that the TIB-2 granitoids, from both the TIB and the Eastern Segment, were derived by reworking of juvenile, pre-existing crust, in an essentially east- to northeast-directed subduction environment. The U-Pb zircon ion microprobe analyses also dated zircon rims which formed by metamorphism during the 1460-1400 Ma Hallandian-Danopolonian orogeny, in granitoids of both the southern Eastern Segment and the western TIB. Leucosome formation, for two samples was dated at 1443±9 Ma and 1437±6 Ma. An aplitic dyke, cross-cutting NW-SE to E-W folding and leucosome formation in the Eastern Segment was dated at 1383±4 Ma, which sets a minimum age for the NW-SE to E-W folding in the area. Hence, it is concluded that the leucosome formation and the NW-SE to E-W folding in the investigated part of the Eastern Segment as well as NW-SE to E-W penetrative foliation and lineation in the western TIB took place during the 1470-1400 Ma Hallandian-Danopolonian orogeny. No c. 970 Ma Sveconorwegian ages were recorded in any of the areas investigated. Nevertheless, Sveconorwegian (in addition to earlier) block movements caused uplift of the Eastern Segment relative to the TIB, revealing from west to east: (1) the highly exhumed metamorphosed southern Eastern Segment, in which the effects of both the Hallandian-Danopolonian and the Sveconorwegian orogenies can be seen, (2) the partly exhumed westernmost TIB-2 showing the effects of the Hallandian-Danopolonian orogeny only, and (3) the easternmost TIB-2 granitoids, as well as the supracrustal and shallow emplaced TIB-1 granitoid rocks in the east. The main part of TIB was apparently unaffected by the Hallandian-Danopolonian orogeny, apart from the intrusion of subordinate felsic bodies and mafic dykes. Tilting and other block movements within the Eastern Segment also occurred during the uplift, revealing lower crustal sections in the south compared to the northern part
    corecore