57 research outputs found

    Coupled changes in western South Atlantic carbon sequestration and particle reactive element cycling during millennial-scale Holocene climate variability.

    Get PDF
    Funder: Alexander von Humboldt FoundationFunder: Petrobras/CENPES Geochemistry NetworkFunder: National Petroleum Agency of BrazilABSTRACT: Continental shelves have the potential to remove atmospheric carbon dioxide via the biological pump, burying it in seafloor sediments. The efficiency of marine carbon sequestration changes rapidly due to variations in biological productivity, organic carbon oxidation, and burial rate. Here we present a high temporal resolution record of marine carbon sequestration changes from a western South Atlantic shelf site sensitive to Brazil Current-driven upwelling. The comparison of biological records to rare earth element (REE) patterns from authigenic oxides shows a strong relationship between higher biological productivity and stronger particle reactive element cycling (i.e. REE cycling) during rapid climate change events. This is the first evidence that authigenic oxides archive past changes in upper ocean REE cycling by the exported organic carbon. In addition, our data suggest that Brazil Current-driven upwelling varies on millennial-scales and in time with continental precipitation anomalies as registered in Brazilian speleothems during the Holocene. This indicates an ocean-atmosphere control on the biological pump, most probably related to South American monsoon system variability

    Orbital forcing and evolution of the Southern African Monsoon from late Miocene to early Pliocene

    Get PDF
    The late Miocene-early Pliocene (7.4-4.5 Ma) is a key interval in Earth's history where intense reorganization of atmospheric and ocean circulation occurred within a global cooling scenario. The Southern African monsoon (SAFM) potentially played an important role in climate systems variability during this interval. However, the dynamics of this important atmospheric system is poorly understood due to the scarcity of continuous records. Here, we present an exceptional continuous late Miocene to early Pliocene reconstruction of SAFM based on elemental geochemistry (Ca/Ti and Si/K ratios), stable isotope geochemistry (δ18O and δ13C recorded in the planktonic foraminifera Orbulina universa), and marine sediment grain size data from the International Ocean Discovery Program (IODP) Site U1476 located at the entrance of the Mozambique Channel. Spectral characteristics of the Si/K ratio (fluvial input) was used to identify the main orbital forcing controlling SAFM. Precession cycles governed precipitation from 7.4 to ∼6.9 Ma and during the early Pliocene. From ∼6.9 to ∼5.9 Ma, the precession and long eccentricity cycles drove the SAFM. The major Antarctic ice sheet expansion across this interval appear to influence the isotopic records of O. universa imprinting its long-term variability signal as a response to the ocean and atmospheric reorganization. Precession cycles markedly weakened from 5.9 to 5.3 Ma, almost the same period when the Mediterranean Outflow Water ceased. These findings highlight important teleconnections among the SAFM, Mediterranean Sea, and other tropical regions

    Genomics and epidemiology for gastric adenocarcinomas (GE4GAC): a Brazilian initiative to study gastric cancer

    Get PDF
    Abstract Gastric cancer (GC) is the fifth most common type of cancer worldwide with high incidences in Asia, Central, and South American countries. This patchy distribution means that GC studies are neglected by large research centers from developed countries. The need for further understanding of this complex disease, including the local importance of epidemiological factors and the rich ancestral admixture found in Brazil, stimulated the implementation of the GE4GAC project. GE4GAC aims to embrace epidemiological, clinical, molecular and microbiological data from Brazilian controls and patients with malignant and pre-malignant gastric disease. In this letter, we summarize the main goals of the project, including subject and sample accrual and current findings

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Spatiotemporal discharge variability of the Doce river in SE Brazil during MIS 6 and 5

    No full text
    The modern precipitation balance in southeastern (SE) Brazil is regulated by the South American summer Monsoon and threatened by global climate change. On glacial-interglacial timescales, monsoon intensity was strongly controlled by precession-forced changes in insolation. To date, relatively little is known about the spatiotemporal distribution of tropical precipitation in SE Brazil and the resulting variability of fluvial discharge on glacial-interglacial timescales. Here, we present X-ray diffraction-derived mineralogical data for the 150–70 ka period (marine isotope stage (MIS) 6 to MIS 5) from the Doce River basin. This area was sensitive to changes in monsoonal precipitation intensity due to its proximity to the South Atlantic Convergence Zone. The data, obtained from a marine sediment core (M125-55–7) close to the Doce river mouth (20°S), show pronounced changes in the Doce River suspension load’s mineralogical composition on glacial-interglacial and precessional timescales. While the ratio of silicates to carbonates displays precession-paced changes, the mineralogical composition of the carbonate-free fraction discriminates between two assemblages which strongly vary between glacial and interglacial time scales, with precession-forced variability only visible in MIS 5. The first assemblage, dominated by high contents of kaolinite and gibbsite, indicates intensified lowland erosion of mature tropical soils. The second one, characterized by higher contents of the well-ordered illite, quartz and albite, points to intensified erosion of immature soils in the upper Doce Basin. High kaolinite contents in the silicate fraction prevailed in late MIS 6 and indicate pronounced lowland soil erosion along a steepened topographic gradient. The illite-rich mineral assemblage was more abundant in MIS 5, particularly during times of high austral summer insolation, indicating strong monsoonal rainfall and intense physical erosion in the upper catchment. When the summer monsoon weakened in times of lower insolation, the mineral assemblage was dominated by kaolinite again, indicative of lower precipitation and runoff in the upper catchment and dominant lowland erosion
    corecore