19 research outputs found

    The common gamma chain cytokine interleukin-21 is expressed by activated lymphocytes from two macropod marsupials, Macropus eugenii and Onychogalea fraenata

    No full text
    In mammals, interleukin-21 is a member of the common gamma chain cytokine family that also includes IL-2, IL-4, IL-7, IL-9 and IL-15. IL-21 has pleiotropic effects on both myeloid and lymphoid immune cells and as a consequence, the biological actions of IL-21 are broad: regulating both innate and adaptive immune responses and playing a pivotal role in antiviral, inflammatory and antitumour cellular responses. While IL-21 genes have been characterized in mammals, birds, fish and amphibians, there are no reports for any marsupial species to date. We characterized the expressed IL-21 gene from immune tissues of two macropod species, the tammar wallaby (Macropus eugenii), a model macropod, and the closely related endangered bridled nailtail wallaby (Onychogalea fraenata). The open reading frame of macropod IL-21 is 462 nucleotides in length and encodes a 153-mer putative protein that has 46% identity with human IL-21. Despite the somewhat low amino acid conservation with other mammals, structural elements and residues essential for IL-21 conformation and receptor association were conserved in the macropod IL-21 predicted peptides. The detection of IL-21 gene expression in T-cell-enriched tissues, combined with analysis of the promotor region of the tammar wallaby gene, suggests that macropod IL-21 is expressed in stimulated T cells but is not readily detected in other cells and tissues. The similarity of gene expression profile and functionally important amino acid residues to eutherian IL-21 makes it unlikely that the differences in B- and T-cell responses that are reported for some marsupial species are due to a lack of important functional residues or IL-21 gene expression in this group of mammals. © 2016 John Wiley & Sons LtdAssociated Grant:The study was funded by departmental resources

    Limitations in the isolation and stimulation of splenic mononuclear cells in a dasyurid marsupial, Phascogale calura

    No full text
    Abstract Objective Marsupials suffer from an increasing number of stressors in this changing world. Functional studies are thus needed to broaden our understanding of the marsupial immune system. The red-tailed phascogale (Phascogale calura) is a small Australian marsupial previously used in descriptive immunological studies. Here, we aimed to develop functional assays by isolating and stimulating blood and spleen mononuclear cells in vitro. Results While peripheral blood mononuclear cell (PBMC) were relatively easy to isolate, only 105 mononuclear cells (> 90% purity and > 75% viability) could be recovered from the spleen, independently of the sex and age of the animal or the centrifugation time and speed tested. The pores of the mesh sieve used for tissue homogenization might have been too big to yield a single cell suspension. Nevertheless, in spite of the overall low number of cells recovered, PBMC and splenic mononuclear cells were successfully activated in preliminary trials with phytohemaglutinin. This activation state was evidenced by a change in shape and the presence of small cell aggregations in the mitogen-stimulated cultures. A non-radioactive colorimetric assay was also performed to confirm cell proliferation in these wells. This work highlights the importance of developing and reporting detailed methodological protocols in non-traditional research species

    Genus Gadus (Gadidae): Composition, distribution, and evolution of forms

    No full text
    corecore