60 research outputs found

    Augmented Cardiac Hypertrophy in Response to Pressure Overload in Mice Lacking ELTD1

    Get PDF
    BACKGROUND: Epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) is developmentally upregulated in the heart. Little is known about the relationship between ELTD1 and cardiac diseases. Therefore, we aimed to clarify the role of ELTD1 in pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS: C57BL/6J wild-type (WT) mice and ELTD1-knockout (KO) mice were subjected to left ventricular pressure overload by descending aortic banding (AB). KO mice exhibited more unfavorable cardiac remodeling than WT mice 28 days post AB; this remodeling was characterized by aggravated cardiomyocyte hypertrophy, thickening of the ventricular walls, dilated chambers, increased fibrosis, and blunted systolic and diastolic cardiac function. Analysis of signaling pathways revealed enhanced extracellular signal-regulated kinase (ERK) and the c-Jun amino-terminal kinase (JNK) phosphorylation in response to ELTD1 deletion. CONCLUSIONS: ELTD1 deficiency exacerbates cardiac hypertrophy and cardiac function induced by AB-induced pressure overload by promoting both cardiomyocyte hypertrophy and cardiac fibrosis. These effects are suggested to originate from the activation of the ERK and JNK pathways, suggesting that ELTD1 is a potential target for therapies that prevent the development of cardiac disease

    Desmoglein 2 mutant mice develop cardiac fibrosis and dilation

    Get PDF
    Desmosomes are cell–cell adhesion sites and part of the intercalated discs, which couple adjacent cardiomyocytes. The connection is formed by the extracellular domains of desmosomal cadherins that are also linked to the cytoskeleton on the cytoplasmic side. To examine the contribution of the desmosomal cadherin desmoglein 2 to cardiomyocyte adhesion and cardiac function, mutant mice were prepared lacking a part of the extracellular adhesive domain of desmoglein 2. Most live born mutant mice presented normal overall cardiac morphology at 2 weeks. Some animals, however, displayed extensive fibrotic lesions. Later on, mutants developed ventricular dilation leading to cardiac insufficiency and eventually premature death. Upon histological examination, cardiomyocyte death by calcifying necrosis and replacement by fibrous tissue were observed. Fibrotic lesions were highly proliferative in 2-week-old mutants, whereas the fibrotic lesions of older mutants showed little proliferation indicating the completion of local muscle replacement by scar tissue. Disease progression correlated with increased mRNA expression of c-myc, ANF, BNF, CTGF and GDF15, which are markers for cardiac stress, remodeling and heart failure. Taken together, the desmoglein 2-mutant mice display features of dilative cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy, an inherited human heart disease with pronounced fibrosis and ventricular arrhythmias that has been linked to mutations in desmosomal proteins including desmoglein 2

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    EUVE Observations of U Gem

    No full text

    Copper-catalyzed addition of nucleophilic silicon to aldehydes

    No full text
    How to train your silane: A new family of chiral copper(I) complexes that bear a bifluoride counteranion were prepared and used in the first example of the enantioselective transfer of a silyl group to an aldehyde. This procedure provides fast access to non-racemic α-hydroxysilanes in high enantioselectivities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore